Suppr超能文献

利用电子健康记录数据与自我报告数据识别乳腺癌高危女性。

Identifying Women at High Risk for Breast Cancer Using Data From the Electronic Health Record Compared With Self-Report.

作者信息

Jiang Xinyi, McGuinness Julia E, Sin Margaret, Silverman Thomas, Kukafka Rita, Crew Katherine D

机构信息

Columbia University, New York, NY.

Herbert Irving Comprehensive Cancer Center, New York, NY.

出版信息

JCO Clin Cancer Inform. 2019 Mar;3:1-8. doi: 10.1200/CCI.18.00072.

Abstract

PURPOSE

A barrier to chemoprevention uptake among high-risk women is the lack of routine breast cancer risk assessment in the primary care setting. We calculated breast cancer risk using the Breast Cancer Surveillance Consortium (BCSC) model, accounting for age, race/ethnicity, first-degree family history of breast cancer, benign breast disease, and mammographic density, using data collected from the electronic health records (EHRs) and self-reports.

PATIENTS AND METHODS

Among women undergoing screening mammography, we enrolled those age 35 to 74 years without a prior history of breast cancer. Data on demographics, first-degree family history, breast radiology, and pathology reports were extracted from the EHR. We assessed agreement between the EHR and self-report on information about breast cancer risk.

RESULTS

Among 9,514 women with known race/ethnicity, 1,443 women (15.2%) met high-risk criteria based upon a 5-year invasive breast cancer risk of 1.67% or greater according to the BCSC model. Among 1,495 women with both self-report and EHR data, more women with a first-degree family history of breast cancer (14.6% v 4.4%) and previous breast biopsies (21.3% v 11.3%) were identified by self-report versus EHR, respectively. However, more women with atypia and lobular carcinoma in situ were identified from the EHR. There was moderate agreement in identification of high-risk women between EHR and self-report data (κ, 0.48; 95% CI, 0.42-0.54).

CONCLUSION

By using EHR data, we determined that 15% of women undergoing screening mammography had a high risk for breast cancer according to the BCSC model. There was moderate agreement between information on breast cancer risk derived from the EHR and self-report. Examining EHR data may serve as an initial screen for identifying women eligible for breast cancer chemoprevention.

摘要

目的

在初级保健环境中,高危女性接受化学预防的一个障碍是缺乏常规乳腺癌风险评估。我们使用乳腺癌监测联盟(BCSC)模型计算乳腺癌风险,该模型考虑了年龄、种族/族裔、乳腺癌一级家族史、良性乳腺疾病和乳腺钼靶密度,数据来自电子健康记录(EHR)和自我报告。

患者和方法

在接受乳腺钼靶筛查的女性中,我们纳入了年龄在35至74岁且无乳腺癌病史的女性。从EHR中提取人口统计学、一级家族史、乳腺放射学和病理报告的数据。我们评估了EHR和自我报告在乳腺癌风险信息方面的一致性。

结果

在9514名已知种族/族裔的女性中,根据BCSC模型,1443名女性(15.2%)符合高危标准,即5年浸润性乳腺癌风险为1.67%或更高。在1495名同时有自我报告和EHR数据的女性中,自我报告分别比EHR识别出更多有乳腺癌一级家族史(14.6%对4.4%)和既往乳腺活检史(21.3%对11.3%)的女性。然而,从EHR中识别出更多有非典型增生和小叶原位癌的女性。EHR和自我报告数据在识别高危女性方面有中度一致性(κ,0.48;95%CI,0.42 - 0.54)。

结论

通过使用EHR数据,我们确定根据BCSC模型,15%接受乳腺钼靶筛查的女性有患乳腺癌的高风险。EHR和自我报告得出的乳腺癌风险信息之间有中度一致性。检查EHR数据可作为识别适合乳腺癌化学预防女性的初步筛查手段。

相似文献

引用本文的文献

本文引用的文献

3
Physician Adherence to Breast Cancer Screening Recommendations.医生对乳腺癌筛查建议的依从性。
JAMA Intern Med. 2017 Jun 1;177(6):763-764. doi: 10.1001/jamainternmed.2017.0458.
8
Risk prediction models of breast cancer: a systematic review of model performances.乳腺癌风险预测模型:系统评价模型性能。
Breast Cancer Res Treat. 2012 May;133(1):1-10. doi: 10.1007/s10549-011-1853-z. Epub 2011 Nov 11.
10
Exemestane for breast-cancer prevention in postmenopausal women.依西美坦用于绝经后妇女的乳腺癌预防。
N Engl J Med. 2011 Jun 23;364(25):2381-91. doi: 10.1056/NEJMoa1103507. Epub 2011 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验