Suppr超能文献

小非编码 RNA RsaE 影响表皮葡萄球菌生物膜群落中外源基质的组成。

The small non-coding RNA RsaE influences extracellular matrix composition in Staphylococcus epidermidis biofilm communities.

机构信息

University of Würzburg, Institute of Molecular Infection Biology, Würzburg, Germany.

出版信息

PLoS Pathog. 2019 Mar 14;15(3):e1007618. doi: 10.1371/journal.ppat.1007618. eCollection 2019 Mar.

Abstract

RsaE is a conserved small regulatory RNA (sRNA) which was previously reported to represent a riboregulator of central carbon flow and other metabolic pathways in Staphylococcus aureus and Bacillus subtilis. Here we show that RsaE contributes to extracellular (e)DNA release and biofilm-matrix switching towards polysaccharide intercellular adhesin (PIA) production in a hypervariable Staphylococcus epidermidis isolate. Transcriptome analysis through differential RNA sequencing (dRNA-seq) in combination with confocal laser scanning microscopy (CLSM) and reporter gene fusions demonstrate that S. epidermidis protein- and PIA-biofilm matrix producers differ with respect to RsaE and metabolic gene expression. RsaE is spatiotemporally expressed within S. epidermidis PIA-mediated biofilms, and its overexpression triggers a PIA biofilm phenotype as well as eDNA release in an S. epidermidis protein biofilm matrix-producing strain background. dRNA-seq and Northern blot analyses revealed RsaE to exist as a major full-length 100-nt transcript and a minor processed species lacking approximately 20 nucleotides at the 5'-end. RsaE processing results in expansion of the mRNA target spectrum. Thus, full-length RsaE interacts with S. epidermidis antiholin-encoding lrgA mRNA, facilitating bacterial lysis and eDNA release. Processed RsaE, however, interacts with the 5'-UTR of icaR and sucCD mRNAs, encoding the icaADBC biofilm operon repressor IcaR and succinyl-CoA synthetase of the tricarboxylic acid (TCA) cycle, respectively. RsaE augments PIA-mediated biofilm matrix production, most likely through activation of icaADBC operon expression via repression of icaR as well as by TCA cycle inhibition and re-programming of staphylococcal central carbon metabolism towards PIA precursor synthesis. Additionally, RsaE supports biofilm formation by mediating the release of eDNA as stabilizing biofilm matrix component. As RsaE itself is heterogeneously expressed within biofilms, we consider this sRNA to function as a factor favoring phenotypic heterogeneity and supporting division of labor in S. epidermidis biofilm communities.

摘要

RsaE 是一种保守的小调控 RNA(sRNA),先前的研究表明它是金黄色葡萄球菌和枯草芽孢杆菌中碳代谢和其他代谢途径的核糖开关。在这里,我们发现 RsaE 有助于表皮葡萄球菌高变株中外源 DNA(eDNA)的释放和生物膜基质向多糖胞间黏附素(PIA)产生的转变。通过差异 RNA 测序(dRNA-seq)结合共聚焦激光扫描显微镜(CLSM)和报告基因融合的转录组分析表明,表皮葡萄球菌蛋白和 PIA 生物膜基质产生者在 RsaE 和代谢基因表达方面存在差异。RsaE 在表皮葡萄球菌 PIA 介导的生物膜中具有时空表达性,其过表达会触发 PIA 生物膜表型以及在表皮葡萄球菌蛋白生物膜基质产生株背景下 eDNA 的释放。dRNA-seq 和 Northern blot 分析表明,RsaE 主要以全长 100nt 的转录本和大约 5'-端缺少 20 个核苷酸的加工形式存在。RsaE 的加工导致 mRNA 靶标谱的扩展。因此,全长 RsaE 与表皮葡萄球菌抗孔蛋白编码 lrgA mRNA 相互作用,促进细菌裂解和 eDNA 释放。然而,加工后的 RsaE 与 icaR 和 sucCD mRNA 的 5'-UTR 相互作用,分别编码生物膜操纵子的阻遏物 IcaR 和三羧酸(TCA)循环中的琥珀酰辅酶 A 合成酶。RsaE 增强了 PIA 介导的生物膜基质产生,很可能是通过抑制 icaR 来激活 icaADBC 操纵子表达,以及通过抑制 TCA 循环和重新编程金黄色葡萄球菌的中心碳代谢来合成 PIA 前体。此外,RsaE 通过介导 eDNA 的释放作为稳定生物膜基质成分来支持生物膜的形成。由于 RsaE 本身在生物膜中不均匀表达,我们认为这种 sRNA 作为一种有利于表型异质性的因素,并支持表皮葡萄球菌生物膜群落中的分工。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d096/6435200/1fd58e1aa297/ppat.1007618.g001.jpg

相似文献

1
The small non-coding RNA RsaE influences extracellular matrix composition in Staphylococcus epidermidis biofilm communities.
PLoS Pathog. 2019 Mar 14;15(3):e1007618. doi: 10.1371/journal.ppat.1007618. eCollection 2019 Mar.
4
Transcriptional Regulation of by both IcaR and TcaR in .
J Bacteriol. 2019 Feb 25;201(6). doi: 10.1128/JB.00524-18. Print 2019 Mar 15.
8
CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis.
Microbiology (Reading). 2011 Dec;157(Pt 12):3458-3468. doi: 10.1099/mic.0.051243-0. Epub 2011 Sep 29.
10
Host factors abolish the need for polysaccharides and extracellular matrix-binding protein in biofilm formation.
J Med Microbiol. 2021 Mar;70(3). doi: 10.1099/jmm.0.001287. Epub 2021 Jan 22.

引用本文的文献

2
A small regulatory RNA controls antibiotic adaptation in by modulating efflux pump expression.
Antimicrob Agents Chemother. 2025 May 7;69(5):e0117624. doi: 10.1128/aac.01176-24. Epub 2025 Apr 3.
3
Differential expression of small RNAs in biofilm-producing clinical methicillin-susceptible recovered from human urine.
Heliyon. 2024 Oct 19;10(20):e39634. doi: 10.1016/j.heliyon.2024.e39634. eCollection 2024 Oct 30.
4
A phosphate starvation induced small RNA promotes Bacillus biofilm formation.
NPJ Biofilms Microbiomes. 2024 Oct 29;10(1):115. doi: 10.1038/s41522-024-00586-6.
5
The pathogenicity and virulence of the opportunistic pathogen .
Virulence. 2024 Dec;15(1):2359483. doi: 10.1080/21505594.2024.2359483. Epub 2024 Jun 13.
7
Rebooting Synthetic Phage-Inducible Chromosomal Islands: One Method to Forge Them All.
Biodes Res. 2020 May 11;2020:5783064. doi: 10.34133/2020/5783064. eCollection 2020.
8
biofilms undergo metabolic and matrix remodeling under nitrosative stress.
Front Cell Infect Microbiol. 2023 Jul 4;13:1200923. doi: 10.3389/fcimb.2023.1200923. eCollection 2023.
9
Regulation of biofilm formation by non-coding RNA in prokaryotes.
Curr Res Pharmacol Drug Discov. 2022 Dec 29;4:100151. doi: 10.1016/j.crphar.2022.100151. eCollection 2023.

本文引用的文献

1
The conserved regulatory RNA RsaE down-regulates the arginine degradation pathway in Staphylococcus aureus.
Nucleic Acids Res. 2018 Sep 28;46(17):8803-8816. doi: 10.1093/nar/gky584.
2
Assessment of sRNAs in .
Front Microbiol. 2018 Feb 20;9:228. doi: 10.3389/fmicb.2018.00228. eCollection 2018.
4
Division of Labor, Bet Hedging, and the Evolution of Mixed Biofilm Investment Strategies.
mBio. 2017 Aug 8;8(4):e00672-17. doi: 10.1128/mBio.00672-17.
5
IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions.
Nucleic Acids Res. 2017 Jul 3;45(W1):W435-W439. doi: 10.1093/nar/gkx279.
7
The target spectrum of SdsR small RNA in Salmonella.
Nucleic Acids Res. 2016 Dec 1;44(21):10406-10422. doi: 10.1093/nar/gkw632. Epub 2016 Jul 12.
8
Genetic engineering of untransformable coagulase-negative staphylococcal pathogens.
Nat Protoc. 2016 May;11(5):949-59. doi: 10.1038/nprot.2016.058. Epub 2016 Apr 21.
9
Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.
PLoS Comput Biol. 2016 Feb 19;12(2):e1004764. doi: 10.1371/journal.pcbi.1004764. eCollection 2016 Feb.
10
Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions.
Front Cell Infect Microbiol. 2015 Feb 17;5:14. doi: 10.3389/fcimb.2015.00014. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验