Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
Department of Chemistry, University of California, Berkeley, CA 94703, USA.
Science. 2019 Mar 15;363(6432). doi: 10.1126/science.aau6173.
Whole-body regeneration is accompanied by complex transcriptomic changes, yet the chromatin regulatory landscapes that mediate this dynamic response remain unexplored. To decipher the regulatory logic that orchestrates regeneration, we sequenced the genome of the acoel worm , a highly regenerative member of the sister lineage of other bilaterians. Epigenomic profiling revealed thousands of regeneration-responsive chromatin regions and identified dynamically bound transcription factor motifs, with the early growth response (EGR) binding site as the most variably accessible during regeneration. Combining inhibition with chromatin profiling suggests that Egr functions as a pioneer factor to directly regulate early wound-induced genes. The genetic connections inferred by this approach allowed the construction of a gene regulatory network for whole-body regeneration, enabling genomics-based comparisons of regeneration across species.
全身再生伴随着复杂的转录组变化,但介导这种动态反应的染色质调控景观仍未被探索。为了解析调控再生的调控逻辑,我们对腔肠动物线虫进行了基因组测序,腔肠动物线虫是其他两侧对称动物姐妹谱系中高度再生的成员。表观基因组分析揭示了数千个对再生有反应的染色质区域,并确定了动态结合的转录因子基序,在再生过程中,早期生长反应 (EGR) 结合位点的可及性变化最大。结合抑制和染色质分析表明,Egr 作为一种先驱因子,直接调控早期伤口诱导基因。这种方法推断的遗传联系允许构建一个用于全身再生的基因调控网络,使基于基因组的物种间再生比较成为可能。