Suppr超能文献

提高美洲狮(Puma concolor)种群密度估计:聚类相机陷阱、遥测数据和广义空间标记重见模型。

Improving estimation of puma (Puma concolor) population density: clustered camera-trapping, telemetry data, and generalized spatial mark-resight models.

机构信息

Wildlife Management Division, New Mexico Department of Game & Fish, Santa Fe, 87507, USA.

Department of Forestry and Natural Resources, University of Kentucky, Lexington, 40546, USA.

出版信息

Sci Rep. 2019 Mar 14;9(1):4590. doi: 10.1038/s41598-019-40926-7.

Abstract

Obtaining reliable population density estimates for pumas (Puma concolor) and other cryptic, wide-ranging large carnivores is challenging. Recent advancements in spatially explicit capture-recapture models have facilitated development of novel survey approaches, such as clustered sampling designs, which can provide reliable density estimation for expansive areas with reduced effort. We applied clustered sampling to camera-traps to detect marked (collared) and unmarked pumas, and used generalized spatial mark-resight (SMR) models to estimate puma population density across 15,314 km in the southwestern USA. Generalized SMR models outperformed conventional SMR models. Integrating telemetry data from collars on marked pumas with detection data from camera-traps substantially improved density estimates by informing cryptic activity (home range) center transiency and improving estimation of the SMR home range parameter. Modeling sex of unmarked pumas as a partially identifying categorical covariate further improved estimates. Our density estimates (0.84-1.65 puma/100 km) were generally more precise (CV = 0.24-0.31) than spatially explicit estimates produced from other puma sampling methods, including biopsy darting, scat detection dogs, and regular camera-trapping. This study provides an illustrative example of the effectiveness and flexibility of our combined sampling and analytical approach for reliably estimating density of pumas and other wildlife across geographically expansive areas.

摘要

获取美洲狮(Puma concolor)和其他隐秘、广泛分布的大型食肉动物的可靠种群密度估计值具有挑战性。最近在空间明确的捕获-再捕获模型方面的进展促进了新的调查方法的发展,例如聚类抽样设计,这种方法可以在减少工作量的情况下,为广阔的区域提供可靠的密度估计。我们应用聚类抽样对相机陷阱进行了检测,以发现有标记(戴项圈)和无标记的美洲狮,并使用广义空间标记-再发现(SMR)模型来估计美国西南部 15314 公里范围内的美洲狮种群密度。广义 SMR 模型优于传统的 SMR 模型。通过将标记的美洲狮项圈上的遥测数据与相机陷阱的检测数据结合起来,综合考虑隐匿活动(家域)中心的易变性,并改进 SMR 家域参数的估计,从而大大提高了密度估计值。将未标记的美洲狮的性别建模为部分识别的分类协变量,进一步提高了估计值。我们的密度估计值(0.84-1.65 只美洲狮/100 公里)通常比其他美洲狮抽样方法(包括生物测定飞镖、粪便检测犬和常规相机陷阱)产生的空间明确估计值更精确(CV=0.24-0.31)。本研究提供了一个有说服力的例子,说明了我们的综合采样和分析方法对于可靠估计地理范围广泛的美洲狮和其他野生动物的密度的有效性和灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验