Suppr超能文献

稳定同位素示踪和宏基因组学突出了植物对污染土壤中未培养菲降解细菌群落的影响。

Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil.

机构信息

Université de Lorraine, CNRS, LIEC, 54500, Nancy, France.

Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France.

出版信息

ISME J. 2019 Jul;13(7):1814-1830. doi: 10.1038/s41396-019-0394-z. Epub 2019 Mar 14.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil pollutants. The discovery that plants can stimulate microbial degradation of PAHs has promoted research on rhizoremediation strategies. We combined DNA-SIP with metagenomics to assess the influence of plants on the identity and metabolic functions of active PAH-degrading bacteria in contaminated soil, using phenanthrene (PHE) as a model hydrocarbon. C-PHE dissipation was 2.5-fold lower in ryegrass-planted conditions than in bare soil. Metabarcoding of 16S rDNA revealed significantly enriched OTUs in C-SIP incubations compared to C-controls, namely 130 OTUs from bare soil and 73 OTUs from planted soil. Active PHE-degraders were taxonomically diverse (Proteobacteria, Actinobacteria and Firmicutes), with Sphingomonas and Sphingobium dominating in bare and planted soil, respectively. Plant root exudates favored the development of PHE-degraders having specific functional traits at the genome level. Indeed, metagenomes of C-enriched DNA fractions contained more genes involved in aromatic compound metabolism in bare soil, whereas carbohydrate catabolism genes were more abundant in planted soil. Functional gene annotation allowed reconstruction of complete pathways with several routes for PHE catabolism. Sphingomonadales were the major taxa performing the first steps of PHE degradation in both conditions, suggesting their critical role to initiate in situ PAH remediation. Active PHE-degraders act in a consortium, whereby complete PHE mineralization is achieved through the combined activity of taxonomically diverse co-occurring bacteria performing successive metabolic steps. Our study reveals hitherto underestimated functional interactions for full microbial detoxification in contaminated soils.

摘要

多环芳烃(PAHs)是普遍存在的土壤污染物。植物可以刺激 PAHs 的微生物降解这一发现促进了根际修复策略的研究。我们结合 DNA-SIP 和宏基因组学来评估植物对污染土壤中活性 PAH 降解细菌的身份和代谢功能的影响,使用菲(PHE)作为模型烃。与裸土相比,黑麦草种植条件下 C-PHE 的消散降低了 2.5 倍。16S rDNA 的代谢组学分析显示,与 C 对照相比,C-SIP 培养物中明显富集了 OTUs,即来自裸土的 130 个 OTUs 和来自种植土的 73 个 OTUs。活性 PHE 降解菌在分类上具有多样性(变形菌门、放线菌门和厚壁菌门),其中 Sphingomonas 和 Sphingobium 分别在裸土和种植土中占主导地位。植物根分泌物有利于具有特定功能特征的 PHE 降解菌的发展在基因组水平上。事实上,C 富集 DNA 分数的宏基因组包含更多参与裸土中芳香族化合物代谢的基因,而种植土中碳水化合物分解代谢基因更为丰富。功能基因注释允许重建具有 PHE 代谢多条途径的完整途径。在两种条件下,Sphingomonadales 都是执行 PHE 降解初始步骤的主要分类群,这表明它们在启动原位 PAH 修复方面的关键作用。活性 PHE 降解菌以联合体的形式发挥作用,通过执行连续代谢步骤的分类群多样化共生细菌的联合活性实现 PHE 的完全矿化。我们的研究揭示了迄今为止对污染土壤中微生物完全解毒的功能相互作用的低估。

相似文献

3
Determination of soil phenanthrene degradation through a fungal-bacterial consortium.真菌-细菌协同作用对土壤中菲降解的影响。
Appl Environ Microbiol. 2024 Jun 18;90(6):e0066224. doi: 10.1128/aem.00662-24. Epub 2024 May 16.

引用本文的文献

7
Determination of soil phenanthrene degradation through a fungal-bacterial consortium.真菌-细菌协同作用对土壤中菲降解的影响。
Appl Environ Microbiol. 2024 Jun 18;90(6):e0066224. doi: 10.1128/aem.00662-24. Epub 2024 May 16.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验