Crevillén-García D, Leung P K, Rodchanarowan A, Shah A A
1School of Engineering, University of Warwick, Coventry, CV4 7AL UK.
2Department of Materials, University of Oxford, Oxford, OX1 3PH UK.
Transp Porous Media. 2019;126(1):79-95. doi: 10.1007/s11242-018-1114-2. Epub 2018 Jul 6.
Groundwater flow models are usually subject to uncertainty as a consequence of the random representation of the conductivity field. In this paper, we use a Gaussian process model based on the simultaneous dimension reduction in the conductivity input and flow field output spaces in order quantify the uncertainty in a model describing the flow of an incompressible liquid in a random heterogeneous porous medium. We show how to significantly reduce the dimensionality of the high-dimensional input and output spaces while retaining the qualitative features of the original model, and secondly how to build a surrogate model for solving the reduced-order stochastic model. A Monte Carlo uncertainty analysis on the full-order model is used for validation of the surrogate model.
由于电导率场的随机表示,地下水流模型通常存在不确定性。在本文中,我们使用基于电导率输入和流场输出空间同时降维的高斯过程模型,以量化描述不可压缩液体在随机非均质多孔介质中流动的模型中的不确定性。我们展示了如何在保留原始模型定性特征的同时,显著降低高维输入和输出空间的维度,其次展示了如何构建替代模型来求解降阶随机模型。对全阶模型进行蒙特卡洛不确定性分析以验证替代模型。