Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
Chem Senses. 2019 Apr 15;44(4):267-278. doi: 10.1093/chemse/bjz014.
A common goal in olfaction research is modeling the link between odorant structure and odor perception. Such modeling efforts require large data sets on olfactory perception, yet only a few of these are publicly and freely available. Given that individual odor perception may be informative on personal makeup and interpersonal relationships, we hypothesized that people would gladly provide olfactory perceptual estimates in the context of an odor-based social network. We developed a web-based infrastructure for such a network we called SmellSpace and distributed 10 000 scratch-and-sniff registration booklets each containing a subset of 12 out of 35 microencapsulated odorants. Within ~100 days, we obtained data from ~1000 participants who rated the odorants along 13 verbal descriptors. To verify that these estimates are comparable to lab-collected estimates we tested 26 participants in a controlled lab setting using the same odorants and descriptors. We observed remarkably high overall group correlations between lab and SmellSpace data, implying that this method provides for credible group-representations of odorants. We further estimated the usability of the data by applying to it two previously published models that used odorant structure alone to predict either odorant pleasantness or pairwise odorant perceptual similarity. We observed statistically significant predictions in both cases, thus further implying that the current data may be helpful toward future efforts of modeling olfactory perception from structure. We conclude that an odor-based social network is a potentially useful instrument for collecting extensive data on olfactory perception and here post the complete raw data set from the first ~1000 participants.
嗅觉研究的一个共同目标是建立气味结构与嗅觉感知之间的联系。这种建模工作需要大量的嗅觉感知数据集,但只有少数数据集是公开和免费提供的。鉴于个体的嗅觉感知可能与个人特质和人际关系有关,我们假设人们会在基于气味的社交网络中欣然提供嗅觉感知估计。我们开发了一个名为 SmellSpace 的基于网络的基础设施来实现这一目标,并分发了 10000 本刮擦和嗅探注册手册,每本手册包含 35 种微封装气味中的 12 种气味的子集。在大约 100 天内,我们从大约 1000 名参与者那里获得了数据,这些参与者沿着 13 个口头描述符对气味进行了评分。为了验证这些估计与实验室收集的估计相当,我们在一个受控的实验室环境中用相同的气味和描述符测试了 26 名参与者。我们观察到实验室和 SmellSpace 数据之间的总体相关性非常高,这意味着这种方法为气味剂提供了可靠的群体代表性。我们进一步通过应用之前发表的两个模型来估计数据的可用性,这两个模型仅使用气味结构来预测气味的愉悦度或成对的气味感知相似性。在这两种情况下,我们都观察到了具有统计学意义的预测,这进一步表明当前的数据可能有助于未来从结构上模拟嗅觉感知的努力。我们得出结论,基于气味的社交网络是收集广泛嗅觉感知数据的一种潜在有用的工具,我们在此发布了前 1000 名参与者的完整原始数据集。