Suppr超能文献

从气味分子的化学特征预测人类嗅觉感知。

Predicting human olfactory perception from chemical features of odor molecules.

作者信息

Keller Andreas, Gerkin Richard C, Guan Yuanfang, Dhurandhar Amit, Turu Gabor, Szalai Bence, Mainland Joel D, Ihara Yusuke, Yu Chung Wen, Wolfinger Russ, Vens Celine, Schietgat Leander, De Grave Kurt, Norel Raquel, Stolovitzky Gustavo, Cecchi Guillermo A, Vosshall Leslie B, Meyer Pablo

机构信息

Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.

School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.

出版信息

Science. 2017 Feb 24;355(6327):820-826. doi: 10.1126/science.aal2014. Epub 2017 Feb 20.

Abstract

It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule.

摘要

目前仍无法预测一个给定的分子是否会有可感知的气味,或者它会产生何种嗅觉感知。因此,我们组织了众包的DREAM嗅觉预测挑战赛。利用一个大型嗅觉心理物理学数据集,各团队开发了机器学习算法,以根据分子的化学信息特征预测其感官属性。所得模型准确地预测了气味强度和愉悦度,还成功预测了19个评级语义描述符中的8个(“大蒜味”“鱼腥味”“甜味”“水果味”“焦糊味”“香料味”“花香味”和“酸味”)。正则化线性模型的表现与基于随机森林的模型相近,其预测准确率接近一个关键的理论极限。这些模型有助于高精度地预测几乎任何分子的感知特性,还能逆向设计分子的气味。

相似文献

4
Data based predictive models for odor perception.基于数据的气味感知预测模型。
Sci Rep. 2020 Oct 13;10(1):17136. doi: 10.1038/s41598-020-73978-1.

引用本文的文献

4
Predictive Machine Learning Models for Olfaction.用于嗅觉的预测性机器学习模型
Methods Mol Biol. 2025;2915:71-99. doi: 10.1007/978-1-0716-4466-9_4.
5
Deep Learning for Odor Prediction on Aroma-Chemical Blends.基于香气化学混合物的气味预测深度学习
ACS Omega. 2025 Mar 3;10(9):8980-8992. doi: 10.1021/acsomega.4c07078. eCollection 2025 Mar 11.
7
Machine learning in healthcare citizen science: A scoping review.医疗保健公民科学中的机器学习:一项范围综述。
Int J Med Inform. 2025 Mar;195:105766. doi: 10.1016/j.ijmedinf.2024.105766. Epub 2024 Dec 19.
8
Automatic scent creation by cheminformatics method.通过化学信息学方法自动生成气味
Sci Rep. 2024 Dec 28;14(1):31284. doi: 10.1038/s41598-024-82654-7.

本文引用的文献

2
Noise-driven causal inference in biomolecular networks.生物分子网络中由噪声驱动的因果推理
PLoS One. 2015 Jun 1;10(6):e0125777. doi: 10.1371/journal.pone.0125777. eCollection 2015.
3
Predicting odor perceptual similarity from odor structure.从气味结构预测气味感知相似度。
PLoS Comput Biol. 2013;9(9):e1003184. doi: 10.1371/journal.pcbi.1003184. Epub 2013 Sep 12.
7
In search of the structure of human olfactory space.探索人类嗅觉空间的结构。
Front Syst Neurosci. 2011 Sep 15;5:65. doi: 10.3389/fnsys.2011.00065. eCollection 2011.
8
Carbon chain length and the stimulus problem in olfaction.碳链长度与嗅觉中的刺激问题。
Behav Brain Res. 2010 Dec 20;215(1):110-3. doi: 10.1016/j.bbr.2010.07.007. Epub 2010 Jul 15.
9
Extended-connectivity fingerprints.扩展连接指纹。
J Chem Inf Model. 2010 May 24;50(5):742-54. doi: 10.1021/ci100050t.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验