Wiecha Peter R, Majorel Clément, Girard Christian, Arbouet Arnaud, Masenelli Bruno, Boisron Olivier, Lecestre Aurélie, Larrieu Guilhem, Paillard Vincent, Cuche Aurélien
Appl Opt. 2019 Mar 1;58(7):1682-1690. doi: 10.1364/AO.58.001682.
We propose a simple experimental technique to separately map the emission from electric and magnetic dipole transitions close to single dielectric nanostructures, using a few-nanometer thin film of rare-earth-ion-doped clusters. Rare-earth ions provide electric and magnetic dipole transitions of similar magnitude. By recording the photoluminescence from the deposited layer excited by a focused laser beam, we are able to simultaneously map the electric and magnetic emission enhancement on individual nanostructures. In spite of being a diffraction-limited far-field method with a spatial resolution of a few hundred nanometers, our approach appeals by its simplicity and high signal-to-noise ratio. We demonstrate our technique at the example of single silicon nanorods and dimers, in which we find a significant separation of electric and magnetic near-field contributions. Our method paves the way towards the efficient and rapid characterization of the electric and magnetic optical response of complex photonic nanostructures.
我们提出了一种简单的实验技术,利用几纳米厚的稀土离子掺杂团簇薄膜,分别绘制靠近单个介电纳米结构的电偶极跃迁和磁偶极跃迁的发射图谱。稀土离子提供大小相似的电偶极跃迁和磁偶极跃迁。通过记录聚焦激光束激发的沉积层的光致发光,我们能够同时绘制单个纳米结构上的电发射增强和磁发射增强。尽管这是一种具有几百纳米空间分辨率的衍射极限远场方法,但我们的方法因其简单性和高信噪比而具有吸引力。我们以单晶硅纳米棒和二聚体为例展示了我们的技术,在其中我们发现电近场贡献和磁近场贡献有明显分离。我们的方法为高效、快速地表征复杂光子纳米结构的电光和磁光响应铺平了道路。