Khaireh-Walieh Abdourahman, Langevin Denis, Bennet Pauline, Teytaud Olivier, Moreau Antoine, Wiecha Peter R
LAAS, Université de Toulouse, CNRS, Toulouse, France.
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
Nanophotonics. 2023 Nov 29;12(24):4387-4414. doi: 10.1515/nanoph-2023-0527. eCollection 2023 Dec.
Nanophotonic devices manipulate light at sub-wavelength scales, enabling tasks such as light concentration, routing, and filtering. Designing these devices to achieve precise light-matter interactions using structural parameters and materials is a challenging task. Traditionally, solving this problem has relied on computationally expensive, iterative methods. In recent years, deep learning techniques have emerged as promising tools for tackling the inverse design of nanophotonic devices. While several review articles have provided an overview of the progress in this rapidly evolving field, there is a need for a comprehensive tutorial that specifically targets newcomers without prior experience in deep learning. Our goal is to address this gap and provide practical guidance for applying deep learning to individual scientific problems. We introduce the fundamental concepts of deep learning and critically discuss the potential benefits it offers for various inverse design problems in nanophotonics. We present a suggested workflow and detailed, practical design guidelines to help newcomers navigate the challenges they may encounter. By following our guide, newcomers can avoid frustrating roadblocks commonly experienced when venturing into deep learning for the first time. In a second part, we explore different iterative and direct deep learning-based techniques for inverse design, and evaluate their respective advantages and limitations. To enhance understanding and facilitate implementation, we supplement the manuscript with detailed Python notebook examples, illustrating each step of the discussed processes. While our tutorial primarily focuses on researchers in (nano-)photonics, it is also relevant for those working with deep learning in other research domains. We aim at providing a solid starting point to empower researchers to leverage the potential of deep learning in their scientific pursuits.
纳米光子器件在亚波长尺度上操纵光,从而实现诸如光聚焦、路由和滤波等任务。利用结构参数和材料设计这些器件以实现精确的光与物质相互作用是一项具有挑战性的任务。传统上,解决这个问题依赖于计算成本高昂的迭代方法。近年来,深度学习技术已成为解决纳米光子器件逆向设计问题的有前途的工具。虽然有几篇综述文章概述了这个快速发展领域的进展,但仍需要一篇专门针对没有深度学习经验的新手的全面教程。我们的目标是填补这一空白,并为将深度学习应用于各个科学问题提供实用指导。我们介绍深度学习的基本概念,并批判性地讨论它为纳米光子学中各种逆向设计问题带来的潜在好处。我们提出了一个建议的工作流程和详细、实用的设计指南,以帮助新手应对可能遇到的挑战。通过遵循我们的指南,新手可以避免首次涉足深度学习时常见的令人沮丧的障碍。在第二部分中,我们探索用于逆向设计的不同基于迭代和直接深度学习的技术,并评估它们各自的优点和局限性。为了增强理解并便于实施,我们用详细的Python笔记本示例补充了本文,说明了所讨论过程的每一步。虽然我们的教程主要针对(纳米)光子学领域的研究人员,但它对其他研究领域中从事深度学习工作的人员也有参考价值。我们旨在提供一个坚实的起点,使研究人员能够在其科学探索中利用深度学习的潜力。