Suppr超能文献

在流动和非流动微通道中,研究流速和营养浓度对生物膜积累和粘附强度的影响的微流控研究。

Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels.

机构信息

Centre for Integrated Petroleum Research (CIPR), Uni Research, Nygårdsgaten 112, 5008, Bergen, Norway.

Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Allégaten 41, P.O. Box 7803, 5020, Bergen, Norway.

出版信息

J Ind Microbiol Biotechnol. 2019 Jun;46(6):855-868. doi: 10.1007/s10295-019-02161-x. Epub 2019 Mar 14.

Abstract

Biofilm accumulation in porous media can cause pore plugging and change many of the physical properties of porous media. Engineering bioplugging may have significant applications for many industrial processes, while improved knowledge on biofilm accumulation in porous media at porescale in general has broad relevance for a range of industries as well as environmental and water research. The experimental results by means of microscopic imaging over a T-shape microchannel clearly show that increase in fluid velocity could facilitate biofilm growth, but that above a velocity threshold, biofilm detachment and inhibition of biofilm formation due to high shear stress were observed. High nutrient concentration prompts the biofilm growth; however, the generated biofilm displays a weak adhesive strength. This paper provides an overview of biofilm development in a hydrodynamic environment for better prediction and modelling of bioplugging processes associated with porous systems in petroleum industry, hydrogeology and water purification.

摘要

生物膜在多孔介质中的积累会导致孔隙堵塞,并改变多孔介质的许多物理性质。工程生物堵塞可能对许多工业过程有重要的应用,而在微观尺度上对多孔介质中生物膜积累的更好的了解,通常对一系列行业以及环境和水研究也具有广泛的相关性。通过 T 形微通道的微观成像获得的实验结果清楚地表明,增加流速可以促进生物膜的生长,但在超过速度阈值时,由于高剪切应力,会观察到生物膜的脱落和生物膜形成的抑制。高营养浓度会促使生物膜生长;然而,生成的生物膜显示出较弱的粘附强度。本文综述了水动力环境中的生物膜发展,以便更好地预测和模拟与石油工业、水文地质学和水净化中多孔系统相关的生物堵塞过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验