Suppr超能文献

紧张性甘氨酸能电导在小脑颗粒细胞信号转导中的作用及功能获得性突变的影响。

The role of tonic glycinergic conductance in cerebellar granule cell signalling and the effect of gain-of-function mutation.

机构信息

Gene Therapy Group, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.

The John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia.

出版信息

J Physiol. 2019 May;597(9):2457-2481. doi: 10.1113/JP277626. Epub 2019 Apr 2.

Abstract

KEY POINTS

A T258F mutation of the glycine receptor increases the receptor affinity to endogenous agonists, modifies single-channel conductance and shapes response decay kinetics. Glycine receptors of cerebellar granule cells play their functional role not continuously, but when the granule cell layer starts receiving a high amount of excitatory inputs. Despite their relative scarcity, tonically active glycine receptors of cerebellar granule cells make a significant impact on action potential generation and inter-neuronal crosstalk, and modulate synaptic plasticity in neural networks; extracellular glycine increases probability of postsynaptic response occurrence acting at NMDA receptors and decreases this probability acting at glycine receptors. Tonic conductance through glycine receptors of cerebellar granule cells is a yet undiscovered element of the biphasic mechanism that regulates processing of sensory inputs in the cerebellum. A T258F point mutation disrupts this biphasic mechanism, thus illustrating the possible role of the gain-of-function mutations of the glycine receptor in development of neural pathologies.

ABSTRACT

Functional glycine receptors (GlyRs) have been repeatedly detected in cerebellar granule cells (CGCs), where they deliver exclusively tonic inhibitory signals. The functional role of this signalling, however, remains unclear. Apart from that, there is accumulating evidence of the important role of GlyRs in cerebellar structures in development of neural pathologies such as hyperekplexia, which can be triggered by GlyR gain-of-function mutations. In this research we initially tested functional properties of GlyRs, carrying the yet understudied T258F gain-of-function mutation, and found that this mutation makes significant modifications in GlyR response to endogenous agonists. Next, we clarified the role of tonic GlyR conductance in neuronal signalling generated by single CGCs and by neural networks in cell cultures and in living cerebellar tissue of C57Bl-6J mice. We found that GlyRs of CGCs deliver a significant amount of tonic inhibition not continuously, but when the cerebellar granule layer starts receiving substantial excitatory input. Under these conditions tonically active GlyRs become a part of neural signalling machinery allowing generation of action potential (AP) bursts of limited length in response to sensory-evoked signals. GlyRs of CGCs support a biphasic modulatory mechanism which enhances AP firing when excitatory input intensity is low, but suppresses it when excitatory input rises to a certain critical level. This enables one of the key functions of the CGC layer: formation of sensory representations and their translation into motor output. Finally, we have demonstrated that the T258F mutation in CGC GlyRs modifies single-cell and neural network signalling, and breaks a biphasic modulation of the AP-generating machinery.

摘要

要点

甘氨酸受体的 T258F 突变增加了受体对内源性激动剂的亲和力,改变了单通道电导,并改变了反应衰减动力学。小脑颗粒细胞的甘氨酸受体并非连续发挥功能,而是在小脑颗粒细胞层开始接收大量兴奋性输入时发挥功能。尽管数量相对较少,但小脑颗粒细胞持续激活的甘氨酸受体对动作电位的产生和神经元间的串扰有显著影响,并调节神经网络中的突触可塑性;细胞外甘氨酸通过作用于 NMDA 受体增加突触后反应发生的可能性,并通过作用于甘氨酸受体降低这种可能性。小脑颗粒细胞甘氨酸受体的紧张性传导是调节小脑感觉输入处理的双相机制中尚未被发现的一个要素。T258F 点突变破坏了这种双相机制,从而说明了甘氨酸受体功能获得性突变在神经病理学发展中的可能作用。

摘要

功能性甘氨酸受体(GlyRs)在小脑颗粒细胞(CGCs)中反复被检测到,它们只传递紧张性抑制信号。然而,这种信号传递的功能作用仍然不清楚。除此之外,越来越多的证据表明 GlyRs 在小脑结构中的重要作用,例如由 GlyR 功能获得性突变引发的发作性强肌痉挛症等神经病理学疾病。在这项研究中,我们最初测试了携带尚未被深入研究的 T258F 功能获得性突变的 GlyRs 的功能特性,发现该突变对 GlyR 对内源性激动剂的反应产生了显著的改变。接下来,我们阐明了紧张性 GlyR 电导在由单个 CGC 产生的神经元信号以及在细胞培养物中和在 C57Bl-6J 小鼠的活体小脑组织中的神经网络中产生的作用。我们发现,当小脑颗粒层开始接收大量兴奋性输入时,CGC 的 GlyRs 并非连续,而是间歇性地传递大量紧张性抑制。在这些条件下,持续激活的 GlyRs 成为神经信号机制的一部分,使对感觉诱发信号的反应产生有限长度的动作电位(AP)爆发。CGC 的 GlyRs 支持双相调节机制,当兴奋性输入强度较低时增强 AP 放电,但当兴奋性输入上升到一定的临界水平时抑制它。这使 CGC 层的一个关键功能成为可能:形成感觉表现,并将其转化为运动输出。最后,我们证明了 CGC GlyRs 的 T258F 突变改变了单细胞和神经网络信号,并破坏了产生 AP 的机器的双相调节。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验