Suppr超能文献

利用多次溶液交换技术对细胞受体进行亚毫秒级别的配体探测。

Sub-millisecond ligand probing of cell receptors with multiple solution exchange.

机构信息

UCL Institute of Neurology, University College London, London, UK.

出版信息

Nat Protoc. 2013;8(7):1299-306. doi: 10.1038/nprot.2013.075. Epub 2013 Jun 6.

Abstract

The accurate knowledge of receptor kinetics is crucial to our understanding of cell signal transduction in general and neural function in particular. The classical technique of probing membrane receptors on a millisecond scale involves placing a recording micropipette with a membrane patch in front of a double-barrel (θ-glass) application pipette mounted on a piezo actuator. Driven by electric pulses, the actuator can rapidly shift the θ-glass pipette tip, thus exposing the target receptors to alternating ligand solutions. However, membrane patches survive for only a few minutes, thus normally restricting such experiments to a single-application protocol. In order to overcome this deficiency, we have introduced pressurized supply microcircuits in the θ-glass channels, thus enabling repeated replacement of application solutions within 10-15 s. This protocol, which has been validated in our recent studies and takes 20-60 min to implement, allows the characterization of ligand-receptor interactions with high sensitivity, thereby also enabling a powerful paired-sample statistical design.

摘要

准确了解受体动力学对于我们理解细胞信号转导(特别是神经功能)至关重要。探测毫秒级膜受体的经典技术包括将带有膜片的记录微管放置在安装在压电致动器上的双筒(θ-玻璃)应用管前。致动器通过电脉冲驱动,可以快速移动θ-玻璃管尖端,从而使靶受体暴露于交替的配体溶液中。然而,膜片只能存活几分钟,因此通常将此类实验限制在单次应用方案中。为了克服这一缺陷,我们在θ-玻璃通道中引入了加压供应微电路,从而能够在 10-15 秒内重复更换应用溶液。该方案已在我们最近的研究中得到验证,实施时间为 20-60 分钟,可实现高灵敏度的配体-受体相互作用的特征描述,从而还能实现强大的配对样本统计设计。

相似文献

2
Glutamate Receptor Probing with Rapid Application and Solution Exchange (RASE).
Methods Mol Biol. 2019;1941:65-78. doi: 10.1007/978-1-4939-9077-1_6.
10

引用本文的文献

1
10

本文引用的文献

10
Fast local superfusion technique.
Pflugers Arch. 1996 Jun;432(2):351-4. doi: 10.1007/s004240050143.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验