Suppr超能文献

使用定量图像分析对肝细胞癌微血管侵犯进行术前预测

Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis.

作者信息

Zheng Jian, Chakraborty Jayasree, Chapman William C, Gerst Scott, Gonen Mithat, Pak Linda M, Jarnagin William R, DeMatteo Ronald P, Do Richard K G, Simpson Amber L

机构信息

Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.

Department of Surgery, Washington University School of Medicine, St Louis, MO.

出版信息

J Am Coll Surg. 2017 Dec;225(6):778-788.e1. doi: 10.1016/j.jamcollsurg.2017.09.003. Epub 2017 Sep 21.

Abstract

BACKGROUND

Microvascular invasion (MVI) is a significant risk factor for early recurrence after resection or transplantation for hepatocellular carcinoma (HCC). Knowledge of MVI status would help guide treatment recommendations, but is generally identified after operation. This study aims to predict MVI preoperatively using quantitative image analysis.

STUDY DESIGN

One hundred and twenty patients from 2 institutions underwent resection of HCC from 2003 to 2015 were included. The largest tumor from preoperative CT was subjected to quantitative image analysis, which uses an automated computer algorithm to capture regional variation in CT enhancement patterns. Quantitative imaging features by automatic analysis, qualitative radiographic descriptors by 2 radiologists, and preoperative clinical variables were included in multivariate analysis to predict histologic MVI.

RESULTS

Histologic MVI was identified in 19 (37%) patients with tumors ≤5 cm and 34 (49%) patients with tumors >5 cm. Among patients with tumors ≤5 cm, none of the clinical findings or radiographic descriptors were associated with MVI; however, quantitative features based on angle co-occurrence matrix predicted MVI with an area under curve of 0.80, positive predictive value of 63%, and negative predictive value of 85%. In patients with tumors >5 cm, higher α-fetoprotein level, larger tumor size, and viral hepatitis history were associated with MVI, and radiographic descriptors were not. However, a multivariate model combining α-fetoprotein, tumor size, hepatitis status, and quantitative feature based on local binary pattern predicted MVI with area under curve of 0.88, positive predictive value of 72%, and negative predictive value of 96%.

CONCLUSIONS

This study reveals the potential importance of quantitative image analysis as a predictor of MVI.

摘要

背景

微血管侵犯(MVI)是肝细胞癌(HCC)切除或移植术后早期复发的重要危险因素。了解MVI状态有助于指导治疗建议,但通常在手术后才能确定。本研究旨在通过定量图像分析术前预测MVI。

研究设计

纳入了2003年至2015年期间来自2家机构的120例行HCC切除术的患者。对术前CT上最大的肿瘤进行定量图像分析,该分析使用自动计算机算法来捕捉CT增强模式的区域差异。自动分析的定量成像特征、2名放射科医生的定性放射学描述符以及术前临床变量被纳入多变量分析以预测组织学MVI。

结果

在肿瘤≤5 cm的19例(37%)患者和肿瘤>5 cm的34例(49%)患者中发现了组织学MVI。在肿瘤≤5 cm的患者中,没有任何临床发现或放射学描述符与MVI相关;然而,基于角度共生矩阵的定量特征预测MVI的曲线下面积为0.80,阳性预测值为63%,阴性预测值为85%。在肿瘤>5 cm的患者中,较高的甲胎蛋白水平、较大的肿瘤大小和病毒性肝炎病史与MVI相关,而放射学描述符则不然。然而,一个结合甲胎蛋白、肿瘤大小、肝炎状态和基于局部二值模式的定量特征的多变量模型预测MVI的曲线下面积为0.88,阳性预测值为72%,阴性预测值为96%。

结论

本研究揭示了定量图像分析作为MVI预测指标的潜在重要性。

相似文献

1
Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis.
J Am Coll Surg. 2017 Dec;225(6):778-788.e1. doi: 10.1016/j.jamcollsurg.2017.09.003. Epub 2017 Sep 21.
2
A non-smooth tumor margin on preoperative imaging predicts microvascular invasion of hepatocellular carcinoma.
Surg Today. 2016 Nov;46(11):1275-81. doi: 10.1007/s00595-016-1320-x. Epub 2016 Mar 16.
3
Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma.
J Hepatol. 2019 Jun;70(6):1133-1144. doi: 10.1016/j.jhep.2019.02.023. Epub 2019 Mar 13.
5
Validated preoperative computed tomography risk estimation for postoperative hepatocellular carcinoma recurrence.
World J Gastroenterol. 2017 Sep 21;23(35):6467-6473. doi: 10.3748/wjg.v23.i35.6467.
6
Value of Imaging Findings in the Prediction of Microvascular Invasion in Hepatocellular Carcinoma.
Transplant Proc. 2019 Sep;51(7):2403-2407. doi: 10.1016/j.transproceed.2019.01.178. Epub 2019 Aug 8.
7
Preoperative prediction of microvascular invasion of hepatocellular carcinoma using F-FDG PET/CT: a multicenter retrospective cohort study.
Eur J Nucl Med Mol Imaging. 2018 May;45(5):720-726. doi: 10.1007/s00259-017-3880-4. Epub 2017 Nov 22.
9
MRI-based clinical-radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma.
Med Phys. 2024 Jul;51(7):4673-4686. doi: 10.1002/mp.17087. Epub 2024 Apr 20.

引用本文的文献

2
New frontiers in hepatocellular carcinoma: Precision imaging for microvascular invasion prediction.
World J Gastroenterol. 2025 Feb 28;31(8):102224. doi: 10.3748/wjg.v31.i8.102224.
4
Artificial intelligence across oncology specialties: current applications and emerging tools.
BMJ Oncol. 2024 Jan 17;3(1):e000134. doi: 10.1136/bmjonc-2023-000134. eCollection 2024.

本文引用的文献

1
3
Risk factors and patterns of early recurrence after curative hepatectomy for hepatocellular carcinoma.
Surg Oncol. 2016 Mar;25(1):24-9. doi: 10.1016/j.suronc.2015.12.002. Epub 2015 Dec 12.
5
6
Microvascular invasion in hepatocellular carcinoma.
Diagn Interv Radiol. 2016 Mar-Apr;22(2):125-32. doi: 10.5152/dir.2015.15125.
7
Can Current Preoperative Imaging Be Used to Detect Microvascular Invasion of Hepatocellular Carcinoma?
Radiology. 2016 May;279(2):432-42. doi: 10.1148/radiol.2015150998. Epub 2015 Dec 10.
10
Single Hepatocellular Carcinoma: Preoperative MR Imaging to Predict Early Recurrence after Curative Resection.
Radiology. 2015 Aug;276(2):433-43. doi: 10.1148/radiol.15142394. Epub 2015 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验