State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
J Gen Physiol. 2019 Jun 3;151(6):727-737. doi: 10.1085/jgp.201812176. Epub 2019 Mar 15.
Respiring mitochondria undergo an intermittent electrical and chemical excitation called mitochondrial flash (mitoflash), which transiently uncouples mitochondrial respiration from ATP production. How a mitoflash is generated and what specific role it plays in bioenergetics remain incompletely understood. Here, we investigate mitoflash biogenesis in isolated cardiac mitochondria by varying the respiratory states and substrate supply and by dissecting the involvement of different electron transfer chain (ETC) complexes. We find that robust mitoflash activity occurs once mitochondria are electrochemically charged by state II/IV respiration (i.e., no ATP synthesis at Complex V), regardless of the substrate entry site (Complex I, Complex II, or Complex IV). Inhibiting forward electron transfer abolishes, while blocking reverse electron transfer generally augments, mitoflash production. Switching from state II/IV to state III respiration, to allow for ATP synthesis at Complex V, markedly diminishes mitoflash activity. Intriguingly, when mitochondria are electrochemically charged by the ATPase activity of Complex V, mitoflashes are generated independently of ETC activity. These findings suggest that mitoflash biogenesis is mechanistically linked to the build up of mitochondrial electrochemical potential rather than ETC activity alone, and may functionally counteract overcharging of the mitochondria and hence serve as an autoregulator of mitochondrial proton electrochemical potential.
呼吸的线粒体经历间歇性的电和化学激发,称为线粒体闪光(mitoflash),它瞬时地使线粒体呼吸与 ATP 产生解偶联。mitoflash 的产生方式及其在生物能量学中的具体作用仍不完全清楚。在这里,我们通过改变呼吸状态和底物供应来研究分离的心肌线粒体中的 mitoflash 生物发生,并通过剖析不同电子传递链(ETC)复合物的参与来进行研究。我们发现,一旦线粒体通过状态 II/IV 呼吸(即,在复合物 V 处没有 ATP 合成)进行电化学充电,就会发生强大的 mitoflash 活性,而与底物进入位点(复合物 I、复合物 II 或复合物 IV)无关。抑制正向电子转移会消除,而阻断反向电子转移通常会增加 mitoflash 的产生。从状态 II/IV 切换到状态 III 呼吸,以允许在复合物 V 处合成 ATP,会显著降低 mitoflash 活性。有趣的是,当线粒体通过复合物 V 的 ATP 酶活性进行电化学充电时,mitoflashes 的产生独立于 ETC 活性。这些发现表明,mitoflash 的生物发生与线粒体电化学势的积累在机制上相关,而不仅仅与 ETC 活性相关,并且可能在功能上抵消线粒体的过充电,因此作为线粒体质子电化学势的自动调节剂。