Suppr超能文献

利用大健康医疗数据推进医学科学和公共卫生的挑战与机遇。

Challenges and Opportunities for Using Big Health Care Data to Advance Medical Science and Public Health.

机构信息

Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, Washington.

Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington.

出版信息

Am J Epidemiol. 2019 May 1;188(5):851-861. doi: 10.1093/aje/kwy292.

Abstract

Methodological advancements in epidemiology, biostatistics, and data science have strengthened the research world's ability to use data captured from electronic health records (EHRs) to address pressing medical questions, but gaps remain. We describe methods investments that are needed to curate EHR data toward research quality and to integrate complementary data sources when EHR data alone are insufficient for research goals. We highlight new methods and directions for improving the integrity of medical evidence generated from pragmatic trials, observational studies, and predictive modeling. We also discuss needed methods contributions to further ease data sharing across multisite EHR data networks. Throughout, we identify opportunities for training and for bolstering collaboration among subject matter experts, methodologists, practicing clinicians, and health system leaders to help ensure that methods problems are identified and resulting advances are translated into mainstream research practice more quickly.

摘要

方法学在流行病学、生物统计学和数据科学方面的进步,增强了研究界利用电子健康记录 (EHR) 中捕获的数据来解决紧迫医学问题的能力,但仍存在差距。我们描述了为达到研究质量而对 EHR 数据进行管理,以及在 EHR 数据不足以实现研究目标时整合补充数据源所需的方法投资。我们重点介绍了改进实用试验、观察性研究和预测模型中生成的医学证据完整性的新方法和方向。我们还讨论了在进一步促进多站点 EHR 数据网络之间的数据共享方面所需的方法贡献。在整个过程中,我们确定了培训机会,并加强了主题专家、方法学家、执业临床医生和卫生系统领导者之间的合作,以帮助确保及时发现方法问题,并将由此产生的进展转化为主流研究实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验