Suppr超能文献

预测工具识别非创伤性骨折风险个体的性能:系统评价、荟萃分析和荟萃回归。

Performance of predictive tools to identify individuals at risk of non-traumatic fracture: a systematic review, meta-analysis, and meta-regression.

机构信息

Department of Social and Preventive Medicine, Medicine Faculty, Laval University, Ferdinand Vandry Pavillon, 1050 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.

CHU de Québec-Université Laval Research Center, Québec, QC, Canada.

出版信息

Osteoporos Int. 2019 Apr;30(4):721-740. doi: 10.1007/s00198-019-04919-6. Epub 2019 Mar 14.

Abstract

UNLABELLED

There is no consensus on which tool is the most accurate to assess fracture risk. The results of this systematic review suggest that QFracture, Fracture Risk Assessment Tool (FRAX) with BMD, and Garvan with BMD are the tools with the best discriminative ability. More studies assessing the comparative performance of current tools are needed.

INTRODUCTION

Many tools exist to assess fracture risk. This review aims to determine which tools have the best predictive accuracy to identify individuals at high risk of non-traumatic fracture.

METHODS

Studies assessing the accuracy of tools for prediction of fracture were searched in MEDLINE, EMBASE, Evidence-Based Medicine Reviews, and Global Health. Studies were eligible if discrimination was assessed in a population independent of the derivation cohort. Meta-analyses and meta-regressions were performed on areas under the ROC curve (AUCs). Gender, mean age, age range, and study quality were used as adjustment variables.

RESULTS

We identified 53 validation studies assessing the discriminative ability of 14 tools. Given the small number of studies on some tools, only FRAX, Garvan, and QFracture were compared using meta-regression models. In the unadjusted analyses, QFracture had the best discriminative ability to predict hip fracture (AUC = 0.88). In the adjusted analysis, FRAX with BMD (AUC = 0.81) and Garvan with BMD (AUC = 0.79) had the highest AUCs. For prediction of major osteoporotic fracture, QFracture had the best discriminative ability (AUC = 0.77). For prediction of osteoporotic or any fracture, FRAX with BMD and Garvan with BMD had higher discriminative ability than their versions without BMD (FRAX: AUC = 0.72 vs 0.69, Garvan: AUC = 0.72 vs 0.65). A significant amount of heterogeneity was present in the analyses.

CONCLUSIONS

QFracture, FRAX with BMD, and Garvan with BMD have the highest discriminative performance for predicting fracture. Additional studies in which the performance of current tools is assessed in the same individuals may be performed to confirm this conclusion.

摘要

目的

本综述旨在确定哪些工具具有最佳的预测准确性,以识别高风险非创伤性骨折的个体。

方法

检索了 MEDLINE、EMBASE、循证医学评论和全球健康中的评估工具准确性的研究。如果在独立于推导队列的人群中评估了鉴别力,则符合纳入标准。对受试者工作特征曲线下面积(AUC)进行了荟萃分析和荟萃回归分析。性别、平均年龄、年龄范围和研究质量被用作调整变量。

结果

我们确定了 53 项验证研究,评估了 14 种工具的鉴别能力。鉴于某些工具的研究数量较少,仅使用荟萃回归模型比较了 FRAX、Garvan 和 QFracture。在未调整的分析中,QFracture 对预测髋部骨折的鉴别能力最好(AUC=0.88)。在调整分析中,FRAX 加 BMD(AUC=0.81)和 Garvan 加 BMD(AUC=0.79)的 AUC 最高。对于预测主要骨质疏松性骨折,QFracture 的鉴别能力最佳(AUC=0.77)。对于预测骨质疏松性或任何骨折,FRAX 加 BMD 和 Garvan 加 BMD 的鉴别能力均高于不加 BMD 的版本(FRAX:AUC=0.72 比 0.69,Garvan:AUC=0.72 比 0.65)。分析中存在大量异质性。

结论

QFracture、FRAX 加 BMD 和 Garvan 加 BMD 对预测骨折具有最高的鉴别性能。可能会进行更多的研究,以评估当前工具在同一人群中的性能,以证实这一结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验