Suppr超能文献

增强加权估计处理随机系数模型中因果推断中实际正性违反的问题。

Augmented Weighted Estimators Dealing with Practical Positivity Violation to Causal inferences in a Random Coefficient Model.

机构信息

California State University, Center for Teacher Quality, 6000 J Street, Modoc Hall 2003, Sacramento, CA, 95819, USA.

California State University, Educator Quality Center, 6000 J Street, Modoc Hall 2003, Sacramento, CA, 95819, USA.

出版信息

Psychometrika. 2019 Jun;84(2):447-467. doi: 10.1007/s11336-018-09657-y. Epub 2019 Mar 15.

Abstract

The inverse probability of treatment weighted (IPTW) estimator can be used to make causal inferences under two assumptions: (1) no unobserved confounders (ignorability) and (2) positive probability of treatment and of control at every level of the confounders (positivity), but is vulnerable to bias if by chance, the proportion of the sample assigned to treatment, or proportion of control, is zero at certain levels of the confounders. We propose to deal with this sampling zero problem, also known as practical violation of the positivity assumption, in a setting where the observed confounder is cluster identity, i.e., treatment assignment is ignorable within clusters. Specifically, based on a random coefficient model assumed for the potential outcome, we augment the IPTW estimating function with the estimated potential outcomes of treatment (or of control) for clusters that have no observation of treatment (or control). If the cluster-specific potential outcomes are estimated correctly, the augmented estimating function can be shown to converge in expectation to zero and therefore yield consistent causal estimates. The proposed method can be implemented in the existing software, and it performs well in simulated data as well as with real-world data from a teacher preparation evaluation study.

摘要

逆概率治疗加权(Inverse Probability of Treatment Weighting,简称 IPTW)估计量可用于在两个假设下进行因果推断:(1)不存在未观测到的混杂因素(可忽略性);(2)在混杂因素的每个水平上,治疗和对照的概率均为正(阳性)。但如果偶然情况下,治疗组或对照组的样本比例在混杂因素的某些水平上为零,那么该估计量就容易产生偏差。我们提出了一种解决方案,用于处理这种抽样零问题,也称为阳性假设的实际违反,该方案的前提是观察到的混杂因素是聚类身份,即治疗分配在聚类内是可忽略的。具体来说,我们基于潜在结果的随机系数模型,为 IPTW 估计函数添加了对没有治疗(或对照)观察的聚类的治疗(或对照)潜在结果的估计。如果聚类特定的潜在结果被正确估计,那么扩充的估计函数可以期望收敛到零,从而产生一致的因果估计。该方法可以在现有的软件中实现,并且在模拟数据以及来自教师准备评估研究的真实世界数据中表现良好。

相似文献

8
Analysis of semi-parametric regression models with non-ignorable non-response.具有不可忽略非应答的半参数回归模型分析
Stat Med. 1997;16(1-3):81-102. doi: 10.1002/(sici)1097-0258(19970115)16:1<81::aid-sim473>3.0.co;2-0.

本文引用的文献

1
Propensity score weighting with multilevel data.倾向评分加权与多层次数据。
Stat Med. 2013 Aug 30;32(19):3373-87. doi: 10.1002/sim.5786. Epub 2013 Mar 24.
3
Diagnosing and responding to violations in the positivity assumption.诊断和应对阳性假设违规行为。
Stat Methods Med Res. 2012 Feb;21(1):31-54. doi: 10.1177/0962280210386207. Epub 2010 Oct 28.
4
Invited commentary: positivity in practice.特邀评论:实践中的积极性。
Am J Epidemiol. 2010 Mar 15;171(6):674-7; discussion 678-81. doi: 10.1093/aje/kwp436. Epub 2010 Feb 5.
5
Models for Value-Added Modeling of Teacher Effects.教师效应增值建模模型。
J Educ Behav Stat. 2004 Spring;29(1):67-101. doi: 10.3102/10769986029001067.
6
Constructing inverse probability weights for marginal structural models.构建边际结构模型的逆概率权重。
Am J Epidemiol. 2008 Sep 15;168(6):656-64. doi: 10.1093/aje/kwn164. Epub 2008 Aug 5.
8
Methods for national population forecasts: a review.国家人口预测方法:综述
J Am Stat Assoc. 1986 Dec;81(396):888-901. doi: 10.1080/01621459.1986.10478347.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验