Suppr超能文献

运动前皮质为步态修改规划期间信息的时间转换提供了基础。

Premotor Cortex Provides a Substrate for the Temporal Transformation of Information During the Planning of Gait Modifications.

机构信息

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University 2-1, 1-1, Midorigaoka-Higashi, Asahikawa, Japan.

Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.

出版信息

Cereb Cortex. 2019 Dec 17;29(12):4982-5008. doi: 10.1093/cercor/bhz039.

Abstract

We tested the hypothesis that the premotor cortex (PMC) in the cat contributes to the planning and execution of visually guided gait modifications. We analyzed single unit activity from 136 cells localized within layer V of cytoarchitectonic areas 6iffu and that part of 4δ within the ventral bank of the cruciate sulcus while cats walked on a treadmill and stepped over an obstacle that advanced toward them. We found a rich variety of discharge patterns, ranging from limb-independent cells that discharged several steps in front of the obstacle to step-related cells that discharged either during steps over the obstacle or in the steps leading up to that step. We propose that this population of task-related cells within this region of the PMC contributes to the temporal evolution of a planning process that transforms global information of the presence of an obstacle into the precise spatio-temporal limb adjustment required to negotiate that obstacle.

摘要

我们检验了这样一个假设,即猫的运动前皮层(PMC)有助于规划和执行视觉引导的步态修改。当猫在跑步机上行走并跨过向它们前进的障碍物时,我们分析了位于细胞构筑区域 6iffu 的 V 层内和十字形沟腹侧支的 4δ 部分内的 136 个细胞的单个单元活动。我们发现了丰富多样的放电模式,从与肢体无关的细胞到与步骤相关的细胞,范围从在障碍物前几步放电的细胞到在障碍物上的步骤中或在导致该步骤的步骤中放电的细胞。我们提出,PM 的这一区域内的这一群与任务相关的细胞有助于规划过程的时间演变,该过程将障碍物存在的全局信息转换为协商该障碍物所需的精确时空肢体调整。

相似文献

2

引用本文的文献

2
Cortical sculpting of a rhythmic motor program.
bioRxiv. 2025 Jun 21:2025.06.20.660772. doi: 10.1101/2025.06.20.660772.
3
Regional specialization of movement encoding across the primate sensorimotor cortex.
Nat Commun. 2025 Jul 1;16(1):5729. doi: 10.1038/s41467-025-61172-8.
5
Stepping up after spinal cord injury: negotiating an obstacle during walking.
Neural Regen Res. 2025 Jul 1;20(7):1919-1929. doi: 10.4103/NRR.NRR-D-24-00369. Epub 2024 Aug 30.
7
Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion.
Neuroscientist. 2025 Jun;31(3):279-295. doi: 10.1177/10738584241263758. Epub 2024 Jul 23.
8
Neural correlates of weight-shift training in older adults: a randomized controlled study.
Sci Rep. 2023 Nov 10;13(1):19609. doi: 10.1038/s41598-023-46645-4.
9
Activity of cat premotor cortex neurons during visually guided stepping.
J Neurophysiol. 2023 Oct 1;130(4):838-860. doi: 10.1152/jn.00114.2023. Epub 2023 Aug 23.

本文引用的文献

1
A functional limitation to the lower limbs affects the neural bases of motor imagery of gait.
Neuroimage Clin. 2018 Jul 5;20:177-187. doi: 10.1016/j.nicl.2018.07.003. eCollection 2018.
4
Similar Motor Cortical Control Mechanisms for Precise Limb Control during Reaching and Locomotion.
J Neurosci. 2015 Oct 28;35(43):14476-90. doi: 10.1523/JNEUROSCI.1908-15.2015.
5
Taking the next step: cortical contributions to the control of locomotion.
Curr Opin Neurobiol. 2015 Aug;33:25-33. doi: 10.1016/j.conb.2015.01.011. Epub 2015 Jan 30.
6
A freely-moving monkey treadmill model.
J Neural Eng. 2014 Aug;11(4):046020. doi: 10.1088/1741-2560/11/4/046020. Epub 2014 Jul 4.
7
It's how you get there: walking down a virtual alley activates premotor and parietal areas.
Front Hum Neurosci. 2014 Feb 25;8:93. doi: 10.3389/fnhum.2014.00093. eCollection 2014.
8
9
Motor cortical regulation of sparse synergies provides a framework for the flexible control of precision walking.
Front Comput Neurosci. 2013 Jul 11;7:83. doi: 10.3389/fncom.2013.00083. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验