Suppr超能文献

大鼠短期禁食期间肝脏代谢的网络建模以预测血浆代谢物变化

Network Modeling of Liver Metabolism to Predict Plasma Metabolite Changes During Short-Term Fasting in the Laboratory Rat.

作者信息

Vinnakota Kalyan C, Pannala Venkat R, Wall Martha L, Rahim Mohsin, Estes Shanea K, Trenary Irina, O'Brien Tracy P, Printz Richard L, Reifman Jaques, Shiota Masakazu, Young Jamey D, Wallqvist Anders

机构信息

Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States.

出版信息

Front Physiol. 2019 Mar 1;10:161. doi: 10.3389/fphys.2019.00161. eCollection 2019.

Abstract

The liver-a central metabolic organ that integrates whole-body metabolism to maintain glucose and fatty-acid regulation, and detoxify ammonia-is susceptible to injuries induced by drugs and toxic substances. Although plasma metabolite profiles are increasingly investigated for their potential to detect liver injury earlier than current clinical markers, their utility may be compromised because such profiles are affected by the nutritional state and the physiological state of the animal, and by contributions from extrahepatic sources. To tease apart the contributions of liver and non-liver sources to alterations in plasma metabolite profiles, here we sought to computationally isolate the plasma metabolite changes originating in the liver during short-term fasting. We used a constraint-based metabolic modeling approach to integrate central carbon fluxes measured in our study, and physiological flux boundary conditions gathered from the literature, into a genome-scale model of rat liver metabolism. We then measured plasma metabolite profiles in rats fasted for 5-7 or 10-13 h to test our model predictions. Our computational model accounted for two-thirds of the observed directions of change (an increase or decrease) in plasma metabolites, indicating their origin in the liver. Specifically, our work suggests that changes in plasma lipid metabolites, which are reliably predicted by our liver metabolism model, are key features of short-term fasting. Our approach provides a mechanistic model for identifying plasma metabolite changes originating in the liver.

摘要

肝脏是一个重要的代谢器官,它整合全身代谢以维持葡萄糖和脂肪酸的调节,并使氨解毒,易受药物和有毒物质引起的损伤。尽管血浆代谢物谱因其比当前临床标志物更早检测肝损伤的潜力而受到越来越多的研究,但其效用可能会受到影响,因为这些谱会受到动物营养状态和生理状态以及肝外来源的影响。为了区分肝脏和非肝脏来源对血浆代谢物谱变化的贡献,我们在此试图通过计算分离短期禁食期间源自肝脏的血浆代谢物变化。我们使用基于约束的代谢建模方法,将我们研究中测量的中心碳通量以及从文献中收集的生理通量边界条件整合到大鼠肝脏代谢的基因组规模模型中。然后,我们测量了禁食5 - 7小时或禁食10 - 13小时的大鼠的血浆代谢物谱以测试我们的模型预测。我们的计算模型解释了观察到的血浆代谢物变化方向(增加或减少)的三分之二,表明它们起源于肝脏。具体而言,我们的研究表明,我们的肝脏代谢模型可靠预测的血浆脂质代谢物变化是短期禁食的关键特征。我们的方法为识别源自肝脏的血浆代谢物变化提供了一个机制模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255b/6405515/b817deb832a2/fphys-10-00161-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验