Amedonu Elsie, Brenker Christoph, Barman Sumanta, Schreiber Julian A, Becker Sebastian, Peischard Stefan, Strutz-Seebohm Nathalie, Strippel Christine, Dik Andre, Hartung Hans-Peter, Budde Thomas, Wiendl Heinz, Strünker Timo, Wünsch Bernhard, Goebels Norbert, Meuth Sven G, Seebohm Guiscard, Melzer Nico
Myocellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases, University of Muenster, Muenster, Germany.
Department of Neurology, University of Muenster, Muenster, Germany.
Front Neurol. 2019 Mar 1;10:178. doi: 10.3389/fneur.2019.00178. eCollection 2019.
N-Methyl-D-aspartate (NMDA) receptors (NMDARs) are among the most important excitatory neurotransmitter receptors in the human brain. Autoantibodies to the human NMDAR cause the most frequent form of autoimmune encephalitis involving autoantibody-mediated receptor cross-linking and subsequent internalization of the antibody-receptor complex. This has been deemed to represent the predominant antibody effector mechanism depleting the NMDAR from the synaptic and extra-synaptic neuronal cell membrane. To assess in detail the molecular mechanisms of autoantibody-induced NMDAR endocytosis, vesicular trafficking, and exocytosis we transiently co-expressed rat GluN1-1a-EGFP and GluN2B-ECFP alone or together with scaffolding postsynaptic density protein 95 (PSD-95), wild-type (WT), or dominant-negative (DN) mutant Ras-related in brain (RAB) proteins (RAB5WT, RAB5DN, RAB11WT, RAB11DN) in HEK 293T cells. The cells were incubated with a pH-rhodamine-labeled human recombinant monoclonal GluN1 IgG1 autoantibody (GluN1-aAb) genetically engineered from clonally expanded intrathecal plasma cells from a patient with anti-NMDAR encephalitis, and the pH-rhodamine fluorescence was tracked over time. We show that due to the acidic luminal pH, internalization of the NMDAR-autoantibody complex into endosomes and lysosomes increases the pH-rhodamine fluorescence. The increase in fluorescence allows for mechanistic assessment of endocytosis, vesicular trafficking in these vesicular compartments, and exocytosis of the NMDAR-autoantibody complex under steady state conditions. Using this method, we demonstrate a role for PSD-95 in stabilization of NMDARs in the cell membrane in the presence of GluN1-aAb, while RAB proteins did not exert a significant effect on vertical trafficking of the internalized NMDAR autoantibody complex in this heterologous expression system. This novel assay allows to unravel molecular mechanisms of autoantibody-induced receptor internalization and to study novel small-scale specific molecular-based therapies for autoimmune encephalitis syndromes.
N-甲基-D-天冬氨酸(NMDA)受体(NMDARs)是人类大脑中最重要的兴奋性神经递质受体之一。针对人类NMDAR的自身抗体导致了最常见的自身免疫性脑炎形式,涉及自身抗体介导的受体交联以及随后抗体-受体复合物的内化。这被认为代表了从突触和突触外神经元细胞膜消耗NMDAR的主要抗体效应机制。为了详细评估自身抗体诱导的NMDAR内吞作用、囊泡运输和胞吐作用的分子机制,我们在HEK 293T细胞中单独或与支架突触后密度蛋白95(PSD-95)、野生型(WT)或显性负性(DN)突变型脑内Ras相关蛋白(RAB)(RAB5WT、RAB5DN、RAB11WT、RAB11DN)一起瞬时共表达大鼠GluN1-1a-EGFP和GluN2B-ECFP。将细胞与从一名抗NMDAR脑炎患者的克隆扩增鞘内浆细胞基因工程改造的pH-罗丹明标记的人重组单克隆GluN1 IgG1自身抗体(GluN1-aAb)孵育,并随时间追踪pH-罗丹明荧光。我们发现,由于酸性内腔pH值,NMDAR-自身抗体复合物内化到内体和溶酶体中会增加pH-罗丹明荧光。荧光的增加使得能够在稳态条件下对内吞作用、这些囊泡区室中的囊泡运输以及NMDAR-自身抗体复合物的胞吐作用进行机制评估。使用这种方法,我们证明了在存在GluN1-aAb的情况下,PSD-95在稳定细胞膜中的NMDAR方面发挥作用,而在这个异源表达系统中,RAB蛋白对内化的NMDAR自身抗体复合物的垂直运输没有显著影响。这种新的检测方法能够揭示自身抗体诱导的受体内化的分子机制,并研究针对自身免疫性脑炎综合征的新型小规模特异性分子疗法。