Department of Biomedical Engineering, Gachon University College of Medicine, Incheon, Republic of Korea.
Department of Plazma Bio Display, Kwangwoon University, Seoul, Republic of Korea.
Comput Math Methods Med. 2019 Feb 6;2019:8790694. doi: 10.1155/2019/8790694. eCollection 2019.
The purpose of this study was to explore the effects of CT slice thickness, reconstruction algorithm, and radiation dose on quantification of CT features to characterize lung nodules using a chest phantom. Spherical lung nodule phantoms of known densities (-630 and + 100 HU) were inserted into an anthropomorphic thorax phantom. CT scan was performed ten times with relocations. CT data were reconstructed using 12 different imaging settings; three different slice thicknesses of 1.25, 2.5, and 5.0 mm, two reconstruction kernels of sharp and standard, and two radiation dose of 30 mAs and 12 mAs. Lesions were segmented using a semiautomated method. Twenty representative CT quantitative features representing CT density and texture were compared using multiple regression analysis. In 100 HU nodule phantoms, 18 and 19 among 20 computer features showed significant difference between different mAs and reconstruction algorithms, respectively ( ≤ 0.05). 20, 19, and 19 computer features showed difference between slice thickness of 5.0 vs 1.25, 5.0 vs 2.5, and 2.5 vs 1.25 mm, respectively ( ≤ 0.05). In -630 HU nodule phantoms, 18 and 19 showed significant difference between different mAs and reconstruction algorithms, respectively ( ≤ 0.05). 18, 11, and 17 computer features showed difference between slice thickness of 5.0 vs 1.25, 5.0 vs 2.5, and 2.5 vs 1.25 mm, respectively ( ≤ 0.05). When comparing the absolute value of regression coefficient, the effect of slice thickness in 100 HU nodule and reconstruction algorithm in -630 HU nodule was greater than the effect of remaining scan parameters. The slice thickness, mAs, and reconstruction algorithm had a significant impact on the quantitative image features. In clinical studies involving deep learning or radiomics, it should be noted that differences in values can occur when using computer features obtained from different CT scan parameters in combination. Therefore, when interpreting the statistical analysis results, it is necessary to reflect the difference in the computer features depending on the scan parameters.
本研究旨在探讨 CT 层厚、重建算法和辐射剂量对使用胸部体模定量评估 CT 特征以表征肺结节的影响。将已知密度(-630 和+100 HU)的球形肺结节体模插入人体胸部体模中。对体模进行了十次重新定位 CT 扫描。使用 12 种不同的成像设置重建 CT 数据,分别为 1.25、2.5 和 5.0mm 三种不同的层厚,锐利和标准两种重建核,30mAs 和 12mAs 两种辐射剂量。使用半自动方法对病变进行分割。使用多元回归分析比较了 20 个代表 CT 密度和纹理的代表性 CT 定量特征。在 100 HU 结节体模中,18 和 19 个计算机特征在不同 mAs 和重建算法之间存在显著差异(≤0.05)。20、19 和 19 个计算机特征在 5.0 与 1.25、5.0 与 2.5 以及 2.5 与 1.25mm 之间存在差异(≤0.05)。在-630 HU 结节体模中,18 和 19 个计算机特征在不同 mAs 和重建算法之间存在显著差异(≤0.05)。18、11 和 17 个计算机特征在 5.0 与 1.25、5.0 与 2.5 以及 2.5 与 1.25mm 之间存在差异(≤0.05)。当比较回归系数的绝对值时,100 HU 结节的层厚和-630 HU 结节的重建算法的影响大于剩余扫描参数的影响。层厚、mAs 和重建算法对定量图像特征有显著影响。在涉及深度学习或放射组学的临床研究中,应注意在结合使用不同 CT 扫描参数获得的计算机特征时,数值可能会有所不同。因此,在解释统计分析结果时,需要根据扫描参数反映计算机特征的差异。