Suppr超能文献

基于深度学习的带肺增强滤波器的胸部 CT 重建算法:对图像质量和磨玻璃结节锐利度的影响。

Deep Learning-Based Reconstruction Algorithm With Lung Enhancement Filter for Chest CT: Effect on Image Quality and Ground Glass Nodule Sharpness.

机构信息

Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea.

GE HealthCare, Seoul, Republic of Korea.

出版信息

Korean J Radiol. 2024 Sep;25(9):833-842. doi: 10.3348/kjr.2024.0472.

Abstract

OBJECTIVE

To assess the effect of a new lung enhancement filter combined with deep learning image reconstruction (DLIR) algorithm on image quality and ground-glass nodule (GGN) sharpness compared to hybrid iterative reconstruction or DLIR alone.

MATERIALS AND METHODS

Five artificial spherical GGNs with various densities (-250, -350, -450, -550, and -630 Hounsfield units) and 10 mm in diameter were placed in a thorax anthropomorphic phantom. Four scans at four different radiation dose levels were performed using a 256-slice CT (Revolution Apex CT, GE Healthcare). Each scan was reconstructed using three different reconstruction algorithms: adaptive statistical iterative reconstruction-V at a level of 50% (AR50), Truefidelity (TF), which is a DLIR method, and TF with a lung enhancement filter (TF + Lu). Thus, 12 sets of reconstructed images were obtained and analyzed. Image noise, signal-to-noise ratio, and contrast-to-noise ratio were compared among the three reconstruction algorithms. Nodule sharpness was compared among the three reconstruction algorithms using the full-width at half-maximum value. Furthermore, subjective image quality analysis was performed.

RESULTS

AR50 demonstrated the highest level of noise, which was decreased by using TF + Lu and TF alone ( = 0.001). TF + Lu significantly improved nodule sharpness at all radiation doses compared to TF alone ( = 0.001). The nodule sharpness of TF + Lu was similar to that of AR50. Using TF alone resulted in the lowest nodule sharpness.

CONCLUSION

Adding a lung enhancement filter to DLIR (TF + Lu) significantly improved the nodule sharpness compared to DLIR alone (TF). TF + Lu can be an effective reconstruction technique to enhance image quality and GGN evaluation in ultralow-dose chest CT scans.

摘要

目的

评估一种新的肺增强滤波器与深度学习图像重建(DLIR)算法相结合对图像质量和磨玻璃结节(GGN)锐利度的影响,与混合迭代重建或单独使用 DLIR 相比。

材料与方法

在一个胸部模拟体模中放置了 5 个具有不同密度(-250、-350、-450、-550 和-630 亨氏单位)和 10 毫米直径的人工球形 GGN。使用 256 层 CT(Revolution Apex CT,GE Healthcare)在四个不同的辐射剂量水平下进行了四次扫描。每次扫描均使用三种不同的重建算法进行重建:自适应统计迭代重建-V 水平为 50%(AR50)、Truefidelity(TF),这是一种 DLIR 方法,以及具有肺增强滤波器的 TF(TF + Lu)。因此,获得并分析了 12 组重建图像。在三种重建算法之间比较了图像噪声、信噪比和对比噪声比。使用半最大值全宽值比较三种重建算法之间的结节锐利度。此外,还进行了主观图像质量分析。

结果

AR50 显示出最高的噪声水平,使用 TF + Lu 和 TF 单独使用时噪声水平降低( = 0.001)。与单独使用 TF 相比,TF + Lu 在所有辐射剂量下均显著提高了结节锐利度( = 0.001)。TF + Lu 的结节锐利度与 AR50 相似。单独使用 TF 导致结节锐利度最低。

结论

将肺增强滤波器添加到 DLIR(TF + Lu)中与单独使用 DLIR(TF)相比,显著提高了结节锐利度。TF + Lu 可作为一种有效的重建技术,用于增强超低剂量胸部 CT 扫描中的图像质量和 GGN 评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8962/11361802/f52b50ffa0e8/kjr-25-833-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验