Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea.
GE HealthCare, Seoul, Republic of Korea.
Korean J Radiol. 2024 Sep;25(9):833-842. doi: 10.3348/kjr.2024.0472.
To assess the effect of a new lung enhancement filter combined with deep learning image reconstruction (DLIR) algorithm on image quality and ground-glass nodule (GGN) sharpness compared to hybrid iterative reconstruction or DLIR alone.
Five artificial spherical GGNs with various densities (-250, -350, -450, -550, and -630 Hounsfield units) and 10 mm in diameter were placed in a thorax anthropomorphic phantom. Four scans at four different radiation dose levels were performed using a 256-slice CT (Revolution Apex CT, GE Healthcare). Each scan was reconstructed using three different reconstruction algorithms: adaptive statistical iterative reconstruction-V at a level of 50% (AR50), Truefidelity (TF), which is a DLIR method, and TF with a lung enhancement filter (TF + Lu). Thus, 12 sets of reconstructed images were obtained and analyzed. Image noise, signal-to-noise ratio, and contrast-to-noise ratio were compared among the three reconstruction algorithms. Nodule sharpness was compared among the three reconstruction algorithms using the full-width at half-maximum value. Furthermore, subjective image quality analysis was performed.
AR50 demonstrated the highest level of noise, which was decreased by using TF + Lu and TF alone ( = 0.001). TF + Lu significantly improved nodule sharpness at all radiation doses compared to TF alone ( = 0.001). The nodule sharpness of TF + Lu was similar to that of AR50. Using TF alone resulted in the lowest nodule sharpness.
Adding a lung enhancement filter to DLIR (TF + Lu) significantly improved the nodule sharpness compared to DLIR alone (TF). TF + Lu can be an effective reconstruction technique to enhance image quality and GGN evaluation in ultralow-dose chest CT scans.
评估一种新的肺增强滤波器与深度学习图像重建(DLIR)算法相结合对图像质量和磨玻璃结节(GGN)锐利度的影响,与混合迭代重建或单独使用 DLIR 相比。
在一个胸部模拟体模中放置了 5 个具有不同密度(-250、-350、-450、-550 和-630 亨氏单位)和 10 毫米直径的人工球形 GGN。使用 256 层 CT(Revolution Apex CT,GE Healthcare)在四个不同的辐射剂量水平下进行了四次扫描。每次扫描均使用三种不同的重建算法进行重建:自适应统计迭代重建-V 水平为 50%(AR50)、Truefidelity(TF),这是一种 DLIR 方法,以及具有肺增强滤波器的 TF(TF + Lu)。因此,获得并分析了 12 组重建图像。在三种重建算法之间比较了图像噪声、信噪比和对比噪声比。使用半最大值全宽值比较三种重建算法之间的结节锐利度。此外,还进行了主观图像质量分析。
AR50 显示出最高的噪声水平,使用 TF + Lu 和 TF 单独使用时噪声水平降低( = 0.001)。与单独使用 TF 相比,TF + Lu 在所有辐射剂量下均显著提高了结节锐利度( = 0.001)。TF + Lu 的结节锐利度与 AR50 相似。单独使用 TF 导致结节锐利度最低。
将肺增强滤波器添加到 DLIR(TF + Lu)中与单独使用 DLIR(TF)相比,显著提高了结节锐利度。TF + Lu 可作为一种有效的重建技术,用于增强超低剂量胸部 CT 扫描中的图像质量和 GGN 评估。