Suppr超能文献

残基-残基接触信息的包含是否能提高蛋白质结构预测的准确性?

Does inclusion of residue-residue contact information boost protein threading?

机构信息

Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama.

出版信息

Proteins. 2019 Jul;87(7):596-606. doi: 10.1002/prot.25684. Epub 2019 Mar 28.

Abstract

Template-based modeling is considered as one of the most successful approaches for protein structure prediction. However, reliably and accurately selecting optimal template proteins from a library of known protein structures having similar folds as the target protein and making correct alignments between the target sequence and the template structures, a template-based modeling technique known as threading, remains challenging, particularly for non- or distantly-homologous protein targets. With the recent advancement in protein residue-residue contact map prediction powered by sequence co-evolution and machine learning, here we systematically analyze the effect of inclusion of residue-residue contact information in improving the accuracy and reliability of protein threading. We develop a new threading algorithm by incorporating various sequential and structural features, and subsequently integrate residue-residue contact information as an additional scoring term for threading template selection. We show that the inclusion of contact information attains statistically significantly better threading performance compared to a baseline threading algorithm that does not utilize contact information when everything else remains the same. Experimental results demonstrate that our contact based threading approach outperforms popular threading method MUSTER, contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted protein threading methods EigenTHREADER and map_align on several benchmarks. Our study illustrates that the inclusion of contact maps is a promising avenue in protein threading to ultimately help to improve the accuracy of protein structure prediction.

摘要

基于模板的建模被认为是蛋白质结构预测最成功的方法之一。然而,从具有与目标蛋白质相似折叠的已知蛋白质结构库中可靠且准确地选择最佳模板蛋白质,并在目标序列和模板结构之间进行正确的对齐,这对于非同源或远同源的蛋白质目标仍然具有挑战性。随着最近在基于序列共进化和机器学习的蛋白质残基接触图预测方面的进展,我们在这里系统地分析了在提高蛋白质穿线准确性和可靠性方面纳入残基接触信息的效果。我们通过整合各种序列和结构特征来开发一种新的穿线算法,随后将残基接触信息作为穿线模板选择的附加评分项。我们表明,与不利用接触信息的基线穿线算法相比,包含接触信息可显著提高穿线性能,而其他条件保持不变。实验结果表明,我们的基于接触的穿线方法在几个基准测试上优于流行的 MUSTER 穿线方法、接触辅助从头折叠方法 CONFOLD2 以及最近的基于接触的蛋白质穿线方法 EigenTHREADER 和 map_align。我们的研究表明,在蛋白质穿线中纳入接触图是一种很有前途的方法,最终有助于提高蛋白质结构预测的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验