Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA.
Department of Computer Science, Florida Polytechnic University, Lakeland, Florida, USA.
Proteins. 2022 Dec;90(12):2023-2034. doi: 10.1002/prot.26394. Epub 2022 Jul 12.
Protein contact maps have proven to be a valuable tool in the deep learning revolution of protein structure prediction, ushering in the recent breakthrough by AlphaFold2. However, self-assessment of the quality of predicted structures are typically performed at the granularity of three-dimensional coordinates as opposed to directly exploiting the rotation- and translation-invariant two-dimensional (2D) contact maps. Here, we present rrQNet, a deep learning method for self-assessment in 2D by contact map quality estimation. Our approach is based on the intuition that for a contact map to be of high quality, the residue pairs predicted to be in contact should be mutually consistent with the evolutionary context of the protein. The deep neural network architecture of rrQNet implements this intuition by cascading two deep modules-one encoding the evolutionary context and the other performing evolutionary reconciliation. The penultimate stage of rrQNet estimates the quality scores at the interacting residue-pair level, which are then aggregated for estimating the quality of a contact map. This design choice offers versatility at varied resolutions from individual residue pairs to full-fledged contact maps. Trained on multiple complementary sources of contact predictors, rrQNet facilitates generalizability across various contact maps. By rigorously testing using publicly available datasets and comparing against several in-house baseline approaches, we show that rrQNet accurately reproduces the true quality score of a predicted contact map and successfully distinguishes between accurate and inaccurate contact maps predicted by a wide variety of contact predictors. The open-source rrQNet software package is freely available at https://github.com/Bhattacharya-Lab/rrQNet.
蛋白质接触图已被证明是蛋白质结构预测深度学习革命中的一种有价值的工具,引领了 AlphaFold2 的最新突破。然而,预测结构的质量自我评估通常是在三维坐标的粒度上进行的,而不是直接利用旋转和平移不变的二维(2D)接触图。在这里,我们提出了 rrQNet,这是一种通过接触图质量估计进行 2D 自我评估的深度学习方法。我们的方法基于这样一种直觉,即对于高质量的接触图,预测为相互接触的残基对应该与蛋白质的进化背景相互一致。rrQNet 的深度神经网络架构通过级联两个深度模块来实现这种直觉,一个模块编码进化背景,另一个模块执行进化协调。rrQNet 的倒数第二个阶段估计相互作用的残基对的质量分数,然后将这些分数聚合起来估计接触图的质量。这种设计选择提供了从单个残基对到完整接触图的各种分辨率的多功能性。通过在多个互补的接触预测源上进行训练,rrQNet 促进了跨各种接触图的泛化能力。通过使用公开可用的数据集进行严格测试,并与几个内部基准方法进行比较,我们表明 rrQNet 可以准确地再现预测接触图的真实质量分数,并成功地区分由各种接触预测器预测的准确和不准确的接触图。开源的 rrQNet 软件包可在 https://github.com/Bhattacharya-Lab/rrQNet 上免费获得。