Padamsey Zahid, Tong Rudi, Emptage Nigel
Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
Front Synaptic Neurosci. 2019 Mar 4;11:5. doi: 10.3389/fnsyn.2019.00005. eCollection 2019.
Despite evidence that presynaptic efficacy and plasticity influence circuit function and behavior , studies of presynaptic function remain challenging owing to the difficulty of assessing transmitter release in intact tissue. Electrophysiological analyses of transmitter release are indirect and cannot readily resolve basic presynaptic parameters, most notably transmitter release probability ( ), at single synapses. These issues can be circumvented by optical quantal analysis, which uses the all-or-none optical detection of transmitter release in order to calculate . Over the past two decades, we and others have successfully demonstrated that Ca indicators can be strategically implemented to perform optical quantal analysis at single glutamatergic synapses in and preparations. We have found that high affinity Ca indicators can reliably detect spine Ca influx generated by single quanta of glutamate, thereby enabling precise calculation of at single synapses. Importantly, we have shown this method to be robust to changes in postsynaptic efficacy, and to be sensitive to activity-dependent presynaptic changes at central synapses following the induction of long-term potentiation (LTP) and long-term depression (LTD). In this report, we describe how to use Ca-sensitive dyes to perform optical quantal analysis at single synapses in hippocampal slice preparations. The general technique we describe here can be applied to other glutamatergic synapses and can be used with other reporters of glutamate release, including recently improved genetically encoded Ca and glutamate sensors. With ongoing developments in imaging techniques and genetically encoded probes, optical quantal analysis is a promising strategy for assessing presynaptic function and plasticity .
尽管有证据表明突触前效能和可塑性会影响神经回路功能及行为,但由于在完整组织中评估递质释放存在困难,突触前功能的研究仍然具有挑战性。对递质释放的电生理分析是间接的,无法轻易解析单个突触的基本突触前参数,最显著的是递质释放概率( )。这些问题可以通过光学量子分析来规避,光学量子分析利用递质释放的全或无光学检测来计算 。在过去二十年中,我们和其他人已经成功证明,可以战略性地应用钙指示剂在 和 制剂中的单个谷氨酸能突触处进行光学量子分析。我们发现,高亲和力钙指示剂可以可靠地检测由单个谷氨酸量子产生的棘突钙内流,从而能够精确计算单个突触处的 。重要的是,我们已经表明这种方法对突触后效能的变化具有鲁棒性,并且对长期增强(LTP)和长期抑制(LTD)诱导后中枢突触处依赖活动的突触前变化敏感。在本报告中,我们描述了如何使用钙敏感染料在海马切片制剂中的单个突触处进行光学量子分析。我们在此描述的一般技术可应用于其他谷氨酸能突触,并可与其他谷氨酸释放报告分子一起使用,包括最近改进的基因编码钙和谷氨酸传感器。随着成像技术和基因编码探针的不断发展,光学量子分析是评估突触前功能和可塑性的一种有前途的策略。