Suppr超能文献

使用长程 2D 上下文的三维卷积神经网络进行肿瘤分割。

3D convolutional neural networks for tumor segmentation using long-range 2D context.

机构信息

Université Côte d'Azur, Inria Sophia Antipolis, France.

Université Côte d'Azur, Inria Sophia Antipolis, France.

出版信息

Comput Med Imaging Graph. 2019 Apr;73:60-72. doi: 10.1016/j.compmedimag.2019.02.001. Epub 2019 Feb 21.

Abstract

We present an efficient deep learning approach for the challenging task of tumor segmentation in multisequence MR images. In recent years, Convolutional Neural Networks (CNN) have achieved state-of-the-art performances in a large variety of recognition tasks in medical imaging. Because of the considerable computational cost of CNNs, large volumes such as MRI are typically processed by subvolumes, for instance slices (axial, coronal, sagittal) or small 3D patches. In this paper we introduce a CNN-based model which efficiently combines the advantages of the short-range 3D context and the long-range 2D context. Furthermore, we propose a network architecture with modality-specific subnetworks in order to be more robust to the problem of missing MR sequences during the training phase. To overcome the limitations of specific choices of neural network architectures, we describe a hierarchical decision process to combine outputs of several segmentation models. Finally, a simple and efficient algorithm for training large CNN models is introduced. We evaluate our method on the public benchmark of the BRATS 2017 challenge on the task of multiclass segmentation of malignant brain tumors. Our method achieves good performances and produces accurate segmentations with median Dice scores of 0.918 (whole tumor), 0.883 (tumor core) and 0.854 (enhancing core).

摘要

我们提出了一种高效的深度学习方法,用于解决多序列磁共振图像中肿瘤分割这一具有挑战性的任务。近年来,卷积神经网络(CNN)在医学影像中的各种识别任务中取得了最先进的性能。由于 CNN 的计算成本相当高,因此通常通过子体积(例如切片(轴位、冠状位、矢状位)或小的 3D 补丁)来处理像 MRI 这样的大容量数据。在本文中,我们引入了一种基于 CNN 的模型,该模型有效地结合了短程 3D 上下文和长程 2D 上下文的优势。此外,我们提出了一种具有模态特定子网络的网络架构,以便在训练阶段更能抵抗缺失 MR 序列的问题。为了克服神经网络架构特定选择的局限性,我们描述了一种分层决策过程,用于组合多个分割模型的输出。最后,引入了一种用于训练大型 CNN 模型的简单而高效的算法。我们在 BRATS 2017 挑战赛的公共基准上评估了我们的方法,用于多类恶性脑肿瘤的分割任务。我们的方法取得了良好的性能,产生了准确的分割,整体肿瘤的平均 Dice 得分为 0.918,肿瘤核心为 0.883,增强核心为 0.854。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验