School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
School of Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
J Zhejiang Univ Sci B. 2021 Jun 15;22(6):462-475. doi: 10.1631/jzus.B2000381.
To overcome the computational burden of processing three-dimensional (3D) medical scans and the lack of spatial information in two-dimensional (2D) medical scans, a novel segmentation method was proposed that integrates the segmentation results of three densely connected 2D convolutional neural networks (2D-CNNs). In order to combine the low-level features and high-level features, we added densely connected blocks in the network structure design so that the low-level features will not be missed as the network layer increases during the learning process. Further, in order to resolve the problems of the blurred boundary of the glioma edema area, we superimposed and fused the T2-weighted fluid-attenuated inversion recovery (FLAIR) modal image and the T2-weighted (T2) modal image to enhance the edema section. For the loss function of network training, we improved the cross-entropy loss function to effectively avoid network over-fitting. On the Multimodal Brain Tumor Image Segmentation Challenge (BraTS) datasets, our method achieves dice similarity coefficient values of 0.84, 0.82, and 0.83 on the BraTS2018 training; 0.82, 0.85, and 0.83 on the BraTS2018 validation; and 0.81, 0.78, and 0.83 on the BraTS2013 testing in terms of whole tumors, tumor cores, and enhancing cores, respectively. Experimental results showed that the proposed method achieved promising accuracy and fast processing, demonstrating good potential for clinical medicine.
为了克服处理三维(3D)医学扫描的计算负担和二维(2D)医学扫描中缺乏空间信息的问题,提出了一种新的分割方法,该方法集成了三个密集连接的二维卷积神经网络(2D-CNN)的分割结果。为了结合低水平特征和高水平特征,我们在网络结构设计中添加了密集连接块,以便在学习过程中随着网络层数的增加不会错过低水平特征。此外,为了解决脑肿瘤水肿区域边界模糊的问题,我们对 T2 加权液体衰减反转恢复(FLAIR)模态图像和 T2 加权(T2)模态图像进行叠加和融合,以增强水肿部分。对于网络训练的损失函数,我们改进了交叉熵损失函数,以有效避免网络过拟合。在多模态脑肿瘤图像分割挑战赛(BraTS)数据集上,我们的方法在 BraTS2018 训练集上的全肿瘤、肿瘤核心和增强核心方面的骰子相似系数值分别为 0.84、0.82 和 0.83;在 BraTS2018 验证集上的全肿瘤、肿瘤核心和增强核心方面的骰子相似系数值分别为 0.82、0.85 和 0.83;在 BraTS2013 测试集上的全肿瘤、肿瘤核心和增强核心方面的骰子相似系数值分别为 0.81、0.78 和 0.83。实验结果表明,所提出的方法具有很高的准确性和快速的处理能力,具有很好的临床医学应用潜力。