Suppr超能文献

基于端到端卷积神经网络的掌静脉识别

[Palm vein recognition based on end-to-end convolutional neural network].

作者信息

Du Dongyang, Lu Lijun, Fu Ruiyang, Yuan Lisha, Chen Wufan, Liu Yaqin

机构信息

Department of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2019 Feb 28;39(2):207-214. doi: 10.12122/j.issn.1673-4254.2019.02.13.

Abstract

We propose a novel palm-vein recognition model based on the end-to-end convolutional neural network. In this model, the convolutional layer and the pooling layer were alternately connected to extract the image features, and the categorical attribute was estimated simultaneously via the neural network classifier. The classification error was minimized via the mini-batch stochastic gradient descent algorithm with momentum to optimize the feature descriptor along with the direction of the gradient descent. Four strategies including data augmentation, batch normalization, dropout, and L2 parameter regularization were applied in the model to reduce the generalization error. The experimental results showed that for classifying 500 subjects form PolyU database and a self-established database, this model achieved identification rates of 99.90% and 98.05%, respectively, with an identification time for a single sample less than 9 ms. The proposed approach, as compared with the traditional method, could improve the accuracy of palm vein recognition in clincal applications and provides a new approach to palm vein recognition.

摘要

我们提出了一种基于端到端卷积神经网络的新型掌静脉识别模型。在该模型中,卷积层和池化层交替连接以提取图像特征,并通过神经网络分类器同时估计类别属性。通过带有动量的小批量随机梯度下降算法将分类误差最小化,以沿着梯度下降方向优化特征描述符。模型中应用了数据增强、批量归一化、随机失活和L2参数正则化这四种策略来减少泛化误差。实验结果表明,对于来自香港理工大学数据库和自建数据库的500个受试者进行分类时,该模型的识别率分别达到了99.90%和98.05%,单个样本的识别时间少于9毫秒。与传统方法相比,该方法能够提高临床应用中掌静脉识别的准确率,并为掌静脉识别提供了一种新方法。

相似文献

1
[Palm vein recognition based on end-to-end convolutional neural network].基于端到端卷积神经网络的掌静脉识别
Nan Fang Yi Ke Da Xue Xue Bao. 2019 Feb 28;39(2):207-214. doi: 10.12122/j.issn.1673-4254.2019.02.13.
3
Contact-free palm-vein recognition based on local invariant features.基于局部不变特征的非接触式掌静脉识别
PLoS One. 2014 May 27;9(5):e97548. doi: 10.1371/journal.pone.0097548. eCollection 2014.
7
Palm-vein classification based on principal orientation features.基于主方向特征的掌静脉分类
PLoS One. 2014 Nov 10;9(11):e112429. doi: 10.1371/journal.pone.0112429. eCollection 2014.
9
An Improved Convolutional Neural Network-Based Scene Image Recognition Method.基于改进卷积神经网络的场景图像识别方法。
Comput Intell Neurosci. 2022 Jun 29;2022:3464984. doi: 10.1155/2022/3464984. eCollection 2022.

本文引用的文献

1
Facial Landmark Detection with Tweaked Convolutional Neural Networks.基于微调卷积神经网络的面部地标检测
IEEE Trans Pattern Anal Mach Intell. 2018 Dec;40(12):3067-3074. doi: 10.1109/TPAMI.2017.2787130. Epub 2017 Dec 25.
2
SIFT Meets CNN: A Decade Survey of Instance Retrieval.SIFT 遇见 CNN:实例检索的十年调查。
IEEE Trans Pattern Anal Mach Intell. 2018 May;40(5):1224-1244. doi: 10.1109/TPAMI.2017.2709749.
5
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
6
7
Palm-vein classification based on principal orientation features.基于主方向特征的掌静脉分类
PLoS One. 2014 Nov 10;9(11):e112429. doi: 10.1371/journal.pone.0112429. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验