Suppr超能文献

肠道微生物群在动物模型可重复性方面的作用。

The role of the gut microbiota on animal model reproducibility.

作者信息

Turner Patricia V

机构信息

Charles River Laboratories Wilmington MA USA.

出版信息

Animal Model Exp Med. 2018 Jul 28;1(2):109-115. doi: 10.1002/ame2.12022. eCollection 2018 Jun.

Abstract

The gut microbiota is composed of approximately 10-10 cells, including fungi, bacteria, archaea, protozoa, viruses, and bacteriophages; their genes and their various metabolites were found throughout the gastrointestinal tract. It has co-evolved with each species to assist with day to day bodily functions, such as digestion, metabolism of xenobiotics, development of mucosal immunity and immunomodulation, and protection against invading pathogens. Because of the significant beneficial impact that gut microbiota may have, there is interest in learning more about it and translating these findings into clinical therapies. Results from recent studies characterizing the gut microbiota of various species have demonstrated the range of influences that may affect gut microbiota diversity, including animal strain, obesity, types of enrichment used, bedding and housing methods, treatment with antimicrobials, vendor source, specific animal housing, diet, and intercurrent disease. Relatively little is known about the functional consequences of alterations of the gut microbiota and exactly how changes in richness and diversity of the microbiota translate into changes in health and susceptibility to disease. Furthermore, questions have been raised as to whether germ-free or even ultraclean, barrier-raised mice are relevant models of human disease, given their significantly reduced gut microbiota diversity and complexity compared with conventionally housed mice. In addition, evidence suggests that the specific anatomical location selected for assessing the gut microbiota has a highly significant effect on study outcomes, in that bacterial phyla change significantly along the gastrointestinal tract. This paper will explore animal model reproducibility in light of this information about the gut microbiota.

摘要

肠道微生物群由大约10-10个细胞组成,包括真菌、细菌、古菌、原生动物、病毒和噬菌体;在整个胃肠道中都发现了它们的基因及其各种代谢产物。它与每个物种共同进化,以协助日常身体功能,如消化、外源性物质的代谢、粘膜免疫和免疫调节的发育以及抵御入侵病原体。由于肠道微生物群可能具有重大的有益影响,人们有兴趣更多地了解它并将这些发现转化为临床治疗方法。最近对各种物种肠道微生物群进行特征描述的研究结果表明,可能影响肠道微生物群多样性的因素范围很广,包括动物品系、肥胖、使用的富集类型、垫料和饲养方法、抗菌药物治疗、供应商来源、特定动物饲养、饮食和并发疾病等。关于肠道微生物群改变的功能后果以及微生物群丰富度和多样性的变化究竟如何转化为健康和疾病易感性的变化,人们所知相对较少。此外,鉴于与常规饲养的小鼠相比,无菌甚至超清洁、屏障饲养小鼠肠道微生物群的多样性和复杂性显著降低,有人对它们是否是人类疾病相关模型提出了疑问。此外,有证据表明,选择用于评估肠道微生物群的特定解剖位置对研究结果有非常显著的影响,因为细菌门在整个胃肠道中会发生显著变化。本文将根据有关肠道微生物群的这些信息探讨动物模型的可重复性。

相似文献

1
The role of the gut microbiota on animal model reproducibility.
Animal Model Exp Med. 2018 Jul 28;1(2):109-115. doi: 10.1002/ame2.12022. eCollection 2018 Jun.
2
Changes in the Human Gut Microbiota Associated With Colonization by sp. and spp. in Non-Industrialized Populations.
Front Cell Infect Microbiol. 2021 Mar 18;11:533528. doi: 10.3389/fcimb.2021.533528. eCollection 2021.
3
The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.
Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0008-2014.
4
Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota.
Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2039-2059. doi: 10.1007/s00253-023-12439-x. Epub 2023 Feb 27.
5
Host-microbiome metabolism of a plant toxin in bees.
Elife. 2022 Dec 6;11:e82595. doi: 10.7554/eLife.82595.
7
Loss of MicroRNA-21 Influences the Gut Microbiota, Causing Reduced Susceptibility in a Murine Model of Colitis.
J Crohns Colitis. 2018 Jun 28;12(7):835-848. doi: 10.1093/ecco-jcc/jjy038.
9
Manipulation of Gut Microbiota as a Key Target for Crohn's Disease.
Front Med (Lausanne). 2022 Jun 16;9:887044. doi: 10.3389/fmed.2022.887044. eCollection 2022.
10
Programming of host metabolism by the gut microbiota.
Ann Nutr Metab. 2011;58 Suppl 2:44-52. doi: 10.1159/000328042. Epub 2011 Aug 12.

引用本文的文献

3
Editorial: Gut microbiota's role in high-altitude animal adaptation.
Front Microbiol. 2025 May 29;16:1613028. doi: 10.3389/fmicb.2025.1613028. eCollection 2025.
4
Gut-associated metabolites and diabetes pathology: a systematic review.
Front Endocrinol (Lausanne). 2025 May 21;16:1559638. doi: 10.3389/fendo.2025.1559638. eCollection 2025.
5
Investigation into Critical Gut Microbes Influencing Intramuscular Fat Deposition in Min Pigs.
Animals (Basel). 2024 Oct 30;14(21):3123. doi: 10.3390/ani14213123.
6
Gut microbiota dysbiosis and its impact on asthma and other lung diseases: potential therapeutic approaches.
Korean J Intern Med. 2024 Sep;39(5):746-758. doi: 10.3904/kjim.2023.451. Epub 2024 Aug 30.
7
Characterization of the gastrointestinal microbiome of the Syrian hamster (Mesocricetus auratus) and comparison to data from mice.
FEBS Open Bio. 2024 Oct;14(10):1701-1717. doi: 10.1002/2211-5463.13869. Epub 2024 Aug 4.
8
Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases.
Stem Cell Rev Rep. 2024 Aug;20(6):1441-1458. doi: 10.1007/s12015-024-10733-3. Epub 2024 May 17.
10
Analysis of the gut microbiome in sled dogs reveals glucosamine- and activity-related effects on gut microbial composition.
Front Vet Sci. 2024 Feb 7;11:1272711. doi: 10.3389/fvets.2024.1272711. eCollection 2024.

本文引用的文献

2
Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells.
Science. 2018 May 25;360(6391). doi: 10.1126/science.aan5931.
3
Best practices for analysing microbiomes.
Nat Rev Microbiol. 2018 Jul;16(7):410-422. doi: 10.1038/s41579-018-0029-9.
4
Food withdrawal alters the gut microbiota and metabolome in mice.
FASEB J. 2018 Sep;32(9):4878-4888. doi: 10.1096/fj.201700614R. Epub 2018 Apr 5.
5
Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity.
Blood Adv. 2018 Apr 10;2(7):745-753. doi: 10.1182/bloodadvances.2018017731.
7
Microbial Ecology along the Gastrointestinal Tract.
Microbes Environ. 2017 Dec 27;32(4):300-313. doi: 10.1264/jsme2.ME17017. Epub 2017 Nov 10.
8
Mouse models for human intestinal microbiota research: a critical evaluation.
Cell Mol Life Sci. 2018 Jan;75(1):149-160. doi: 10.1007/s00018-017-2693-8. Epub 2017 Nov 9.
9
PREPARE: guidelines for planning animal research and testing.
Lab Anim. 2018 Apr;52(2):135-141. doi: 10.1177/0023677217724823. Epub 2017 Aug 3.
10
Fecal microbiota variation across the lifespan of the healthy laboratory rat.
Gut Microbes. 2017 Sep 3;8(5):428-439. doi: 10.1080/19490976.2017.1334033. Epub 2017 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验