Suppr超能文献

实施概念网络模型。

Implementing a concept network model.

机构信息

Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.

Department of Psychology, Drexel University, Philadelphia, PA, USA.

出版信息

Behav Res Methods. 2019 Aug;51(4):1717-1736. doi: 10.3758/s13428-019-01217-1.

Abstract

The same concept can mean different things or be instantiated in different forms, depending on context, suggesting a degree of flexibility within the conceptual system. We propose that a feature-based network model can be used to capture and predict this flexibility. We modeled individual concepts (e.g., BANANA, BOTTLE) as graph-theoretical networks, in which properties (e.g., YELLOW, SWEET) were represented as nodes and their associations as edges. In this framework, networks capture within-concept statistics that reflect how properties relate to one another across instances of a concept. We extracted formal measures of these networks that capture different aspects of network structure, and explored whether a concept's network structure relates to its flexibility of use. To do so, we compared network measures to a text-based measure of semantic diversity, as well as to empirical data from a figurative-language task and an alternative-uses task. We found that network-based measures were predictive of the text-based and empirical measures of flexible concept use, highlighting the ability of this approach to formally capture relevant characteristics of conceptual structure. Conceptual flexibility is a fundamental attribute of the cognitive and semantic systems, and in this proof of concept we reveal that variations in concept representation and use can be formally understood in terms of the informational content and topology of concept networks.

摘要

相同的概念在不同的语境下可能有不同的含义或表现形式,这表明概念系统具有一定的灵活性。我们提出,基于特征的网络模型可以用于捕捉和预测这种灵活性。我们将个体概念(例如,BANANA、BOTTLE)建模为图论网络,其中属性(例如,YELLOW、SWEET)表示为节点,它们的关联表示为边。在这个框架中,网络捕捉到了反映概念实例之间属性相互关系的概念内统计数据。我们提取了这些网络的形式化度量,以捕捉网络结构的不同方面,并探索了概念的网络结构与其使用的灵活性之间的关系。为此,我们将网络度量与基于文本的语义多样性度量以及来自比喻语言任务和替代用途任务的实证数据进行了比较。我们发现,基于网络的度量可以预测基于文本的和实证的灵活概念使用度量,这突出了这种方法能够正式捕捉概念结构的相关特征的能力。概念灵活性是认知和语义系统的基本属性,在这个概念验证中,我们揭示了概念表示和使用的变化可以根据概念网络的信息内容和拓扑结构来进行形式化理解。

相似文献

1
Implementing a concept network model.实施概念网络模型。
Behav Res Methods. 2019 Aug;51(4):1717-1736. doi: 10.3758/s13428-019-01217-1.
2
Toward a brain-based componential semantic representation.迈向基于大脑的成分语义表征。
Cogn Neuropsychol. 2016 May-Jun;33(3-4):130-74. doi: 10.1080/02643294.2016.1147426. Epub 2016 Jun 16.
3
Flexible Conceptual Representations.灵活的概念表示。
Cogn Sci. 2024 Jun;48(6):e13475. doi: 10.1111/cogs.13475.
4
Semantic variability predicts neural variability of object concepts.语义变异性可预测物体概念的神经变异性。
Neuropsychologia. 2015 Sep;76:41-51. doi: 10.1016/j.neuropsychologia.2014.11.029. Epub 2014 Nov 25.
5
What does semantic tiling of the cortex tell us about semantics?皮层的语义平铺能告诉我们关于语义的什么信息?
Neuropsychologia. 2017 Oct;105:18-38. doi: 10.1016/j.neuropsychologia.2017.04.011. Epub 2017 Apr 7.
6
Modality-independent encoding of individual concepts in the left parietal cortex.左顶叶皮层中个体概念的模态无关编码。
Neuropsychologia. 2017 Oct;105:39-49. doi: 10.1016/j.neuropsychologia.2017.05.001. Epub 2017 May 3.
7
A graph theory model of the semantic structure of attitudes.态度语义结构的图论模型。
J Psycholinguist Res. 1993 Jul;22(4):411-25. doi: 10.1007/BF01074344.

本文引用的文献

2
Clarifying cognitive control and the controllable connectome.厘清认知控制与可控制连通组。
Wiley Interdiscip Rev Cogn Sci. 2019 Jan;10(1):e1471. doi: 10.1002/wcs.1471. Epub 2018 Jul 3.
4
The neural and computational bases of semantic cognition.语义认知的神经和计算基础。
Nat Rev Neurosci. 2017 Jan;18(1):42-55. doi: 10.1038/nrn.2016.150. Epub 2016 Nov 24.
5
Small-World Brain Networks Revisited.再次探讨小世界脑网络。
Neuroscientist. 2017 Oct;23(5):499-516. doi: 10.1177/1073858416667720. Epub 2016 Sep 21.
7
Putting concepts into context.将概念置于背景之中。
Psychon Bull Rev. 2016 Aug;23(4):1015-27. doi: 10.3758/s13423-015-0948-7.
8
Controllability of structural brain networks.大脑结构网络的可控性
Nat Commun. 2015 Oct 1;6:8414. doi: 10.1038/ncomms9414.
9
Wiring cost and topological participation of the mouse brain connectome.小鼠脑连接组的布线成本和拓扑参与度
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):10032-7. doi: 10.1073/pnas.1420315112. Epub 2015 Jul 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验