Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.
Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada.
Med Phys. 2019 May;46(5):2412-2421. doi: 10.1002/mp.13498. Epub 2019 Apr 2.
This study is devoted to optimizing and characterizing the response of a multipoint plastic scintillator detector (mPSD) for application to in vivo dosimetry in high dose rate (HDR) brachytherapy.
An exhaustive analysis was carried out in order to obtain an optimized mPSD design that maximizes the scintillation light collection produced by the interaction of ionizing photons. More than 20 prototypes of mPSD were built and tested in order to determine the appropriate order of scintillators relative to the photodetector (distal, center, or proximal) as well as their length as a function of the scintillation light emitted. The available detecting elements are the BCF-60, BCF-12, and BCF-10 scintillators (Saint Gobain Crystals, Hiram, OH, USA), separated from each other by segments of Eska GH-4001 clear optical fibers (Mitsubishi Rayon Co., Ltd., Tokyo, Japan). The contribution of each scintillator to the total spectrum was determined by irradiations in the low energy range (<120 keV). For the best mPSD design, a numerical optimization was done in order to select the optical components [dichroic mirrors, filters, and photomultipliers tubes (PMTs)] that best match the light emission profile. Calculations were performed taking into account the measured scintillation spectrum and light yield, the manufacturer-reported transmission and attenuation of the optical components, and the experimentally characterized PMT noise. The optimized dosimetric system was used for HDR brachytherapy measurements. The system was independently controlled from the Ir source via LabVIEW and read simultaneously using an NI-DAQ board. Dose measurements as a function of distance from the source were carried out according to TG-43U1 recommendations. The system performance was quantified in terms of signal to noise ratio (SNR) and signal to background ratio (SBR).
For best overall light-yield emission, it was determined that BCF-60 should be placed at the distal position, BCF-12 in the center, and BCF-10 at the proximal position with respect to the photodetector. This configuration allowed for optimized light transmission through the collecting fiber and avoided inter-scintillator excitation and self-absorption effects. The optimal scintillator length found was of 3, 6, and 7 mm for BCF-10, BCF- 12, and BCF-60, respectively. The optimized luminescence system allowed for signal deconvolution using a multispectral approach, extracting the dose to each element while taking into account the Cerenkov stem effect. Differences between the mPSD measurements and TG-43U1 remain below 5% in the range of 0.5 to 6.5 cm from the source. The dosimetric system can properly differentiate the scintillation signal from the background for a wide range of dose rate conditions; the SNR was found to be above 5 for dose rates above 22 mGy/s while the minimum SBR measured was 1.8 at 6 mGy/s.
Based on the spectral response at different conditions, an mPSD was constructed and optimized for HDR brachytherapy dosimetry. It is sensitive enough to allow multiple simultaneous measurements over a clinically useful distance range, up to 6.5 cm from the source. This study constitutes a baseline for future applications enabling real-time dose measurements and source position reporting over a wide range of dose rate conditions.
本研究致力于优化和表征多点塑料闪烁探测器(mPSD)的响应,以将其应用于高剂量率(HDR)近距离放射治疗中的体内剂量测定。
为了最大限度地提高电离光子相互作用产生的闪烁光收集,我们进行了详尽的分析,以获得最佳的 mPSD 设计。我们构建并测试了超过 20 个 mPSD 原型,以确定相对于光电探测器(远端、中心或近端)的闪烁体的适当顺序,以及它们的长度与发射的闪烁光的关系。可用的探测元件是 BCF-60、BCF-12 和 BCF-10 闪烁体(圣戈班晶体,美国俄亥俄州海勒姆),它们由 Eska GH-4001 透明光纤(三菱 Rayon Co.,Ltd.,日本东京)的段隔开。通过在低能量范围内(<120keV)进行辐照,确定了每个闪烁体对总光谱的贡献。对于最佳的 mPSD 设计,我们进行了数值优化,以选择最佳的光学组件(分色镜、滤光片和光电倍增管(PMT)),以匹配发光谱。计算考虑了测量的闪烁光谱和光产率、光学组件的制造商报告的传输和衰减,以及实验表征的 PMT 噪声。优化后的剂量测定系统用于 HDR 近距离放射治疗测量。该系统通过 LabVIEW 独立于 Ir 源进行控制,并使用 NI-DAQ 板同时进行读取。根据 TG-43U1 建议,进行了距源不同距离处的剂量测量。使用信噪比(SNR)和信号与背景比(SBR)来量化系统性能。
为了获得最佳的整体光产率发射,我们确定 BCF-60 应放置在远端位置,BCF-12 应放置在中心位置,BCF-10 应放置在光电探测器的近端位置。这种配置允许通过收集光纤进行最佳的光传输,并避免了闪烁体之间的激发和自吸收效应。发现最佳的闪烁体长度分别为 3、6 和 7mm,用于 BCF-10、BCF-12 和 BCF-60。优化的发光系统允许使用多光谱方法进行信号分解,在考虑切伦科夫茎效应的同时,提取每个元件的剂量。mPSD 测量与 TG-43U1 之间的差异在距源 0.5 至 6.5cm 的范围内仍保持在 5%以下。该剂量测定系统能够在广泛的剂量率条件下正确地区分闪烁信号和背景;在剂量率高于 22mGy/s 时,SNR 被发现高于 5,而在 6mGy/s 时测量到的最小 SBR 为 1.8。
根据不同条件下的光谱响应,我们构建并优化了用于 HDR 近距离放射治疗剂量测定的 mPSD。它足够灵敏,可以在临床有用的距离范围内进行多次同时测量,距离源最远可达 6.5cm。这项研究为未来的应用提供了一个基准,能够在广泛的剂量率条件下实现实时剂量测量和源位置报告。