IEEE Trans Biomed Eng. 2019 Dec;66(12):3436-3443. doi: 10.1109/TBME.2019.2905763. Epub 2019 Mar 18.
Cardiovascular research and regenerative strategies have been significantly limited by the lack of relevant cell culture models that can recreate complex hemodynamic stresses associated with pressure-volume changes in the heart.
To address this issue, we designed a biomimetic cardiac tissue chip (CTC) model where encapsulated cardiac cells can be cultured in three-dimensional (3-D) fibres and subjected to hemodynamic loading to mimic pressure-volume changes seen in the left ventricle. These 3-D fibres are suspended within a microfluidic chamber between two posts and integrated within a flow loop. Various parameters associated with heart function, like heart rate, peak-systolic pressure, end-diastolic pressure and volume, end-systolic pressure and volume, and duration ratio between systolic and diastolic, can all be precisely manipulated, allowing culture of cardiac cells under developmental, normal, and disease states.
We describe two examples of how the CTC can significantly impact cardiovascular research by reproducing the pathophysiological mechanical stresses associated with pressure overload and volume overload. Our results using H9c2 cells, a cardiomyogenic cell line, clearly show that culture within the CTC under pathological hemodynamic loads accurately induces morphological and gene expression changes, similar to those seen in both hypertrophic and dilated cardiomyopathy. Under pressure overload, the cells within the CTC see increased hypertrophic remodeling and fibrosis, whereas cells subject to prolonged volume overload experience significant changes to cellular aspect ratio through thinning and elongation of the engineered tissue.
These results demonstrate that the CTC can be used to create highly relevant models where hemodynamic loading and unloading are accurately reproduced for cardiovascular disease modeling.
心血管研究和再生策略受到严重限制,原因是缺乏能够重现与心脏压力-容积变化相关的复杂血流动力学应激的相关细胞培养模型。
为了解决这个问题,我们设计了一种仿生心脏组织芯片(CTC)模型,其中包封的心脏细胞可以在三维(3-D)纤维中培养,并受到血流动力学加载以模拟左心室中看到的压力-容积变化。这些 3-D 纤维悬挂在两个支柱之间的微流控室中,并集成在流循环中。与心脏功能相关的各种参数,如心率、收缩期峰值压力、舒张末期压力和容积、收缩末期压力和容积以及收缩期和舒张期之间的持续时间比,都可以精确地进行操作,允许在发育、正常和疾病状态下培养心脏细胞。
我们描述了 CTC 通过再现与压力超负荷和容量超负荷相关的病理生理机械应激,如何显著影响心血管研究的两个示例。我们使用 H9c2 细胞(一种心肌细胞系)的结果清楚地表明,在 CTC 中进行病理血流动力学负荷培养可准确诱导形态和基因表达变化,类似于肥厚型和扩张型心肌病中所见的变化。在压力超负荷下,CTC 中的细胞经历了增加的肥大重塑和纤维化,而受到长时间容量超负荷的细胞通过工程组织的变薄和伸长经历了细胞纵横比的显著变化。
这些结果表明,CTC 可用于创建高度相关的模型,其中血流动力学加载和卸载可准确再现用于心血管疾病建模。