Suppr超能文献

用于心血管疾病建模的心脏组织芯片(CTCs)。

Cardiac Tissue Chips (CTCs) for Modeling Cardiovascular Disease.

出版信息

IEEE Trans Biomed Eng. 2019 Dec;66(12):3436-3443. doi: 10.1109/TBME.2019.2905763. Epub 2019 Mar 18.

Abstract

OBJECTIVE

Cardiovascular research and regenerative strategies have been significantly limited by the lack of relevant cell culture models that can recreate complex hemodynamic stresses associated with pressure-volume changes in the heart.

METHODS

To address this issue, we designed a biomimetic cardiac tissue chip (CTC) model where encapsulated cardiac cells can be cultured in three-dimensional (3-D) fibres and subjected to hemodynamic loading to mimic pressure-volume changes seen in the left ventricle. These 3-D fibres are suspended within a microfluidic chamber between two posts and integrated within a flow loop. Various parameters associated with heart function, like heart rate, peak-systolic pressure, end-diastolic pressure and volume, end-systolic pressure and volume, and duration ratio between systolic and diastolic, can all be precisely manipulated, allowing culture of cardiac cells under developmental, normal, and disease states.

RESULTS

We describe two examples of how the CTC can significantly impact cardiovascular research by reproducing the pathophysiological mechanical stresses associated with pressure overload and volume overload. Our results using H9c2 cells, a cardiomyogenic cell line, clearly show that culture within the CTC under pathological hemodynamic loads accurately induces morphological and gene expression changes, similar to those seen in both hypertrophic and dilated cardiomyopathy. Under pressure overload, the cells within the CTC see increased hypertrophic remodeling and fibrosis, whereas cells subject to prolonged volume overload experience significant changes to cellular aspect ratio through thinning and elongation of the engineered tissue.

CONCLUSIONS

These results demonstrate that the CTC can be used to create highly relevant models where hemodynamic loading and unloading are accurately reproduced for cardiovascular disease modeling.

摘要

目的

心血管研究和再生策略受到严重限制,原因是缺乏能够重现与心脏压力-容积变化相关的复杂血流动力学应激的相关细胞培养模型。

方法

为了解决这个问题,我们设计了一种仿生心脏组织芯片(CTC)模型,其中包封的心脏细胞可以在三维(3-D)纤维中培养,并受到血流动力学加载以模拟左心室中看到的压力-容积变化。这些 3-D 纤维悬挂在两个支柱之间的微流控室中,并集成在流循环中。与心脏功能相关的各种参数,如心率、收缩期峰值压力、舒张末期压力和容积、收缩末期压力和容积以及收缩期和舒张期之间的持续时间比,都可以精确地进行操作,允许在发育、正常和疾病状态下培养心脏细胞。

结果

我们描述了 CTC 通过再现与压力超负荷和容量超负荷相关的病理生理机械应激,如何显著影响心血管研究的两个示例。我们使用 H9c2 细胞(一种心肌细胞系)的结果清楚地表明,在 CTC 中进行病理血流动力学负荷培养可准确诱导形态和基因表达变化,类似于肥厚型和扩张型心肌病中所见的变化。在压力超负荷下,CTC 中的细胞经历了增加的肥大重塑和纤维化,而受到长时间容量超负荷的细胞通过工程组织的变薄和伸长经历了细胞纵横比的显著变化。

结论

这些结果表明,CTC 可用于创建高度相关的模型,其中血流动力学加载和卸载可准确再现用于心血管疾病建模。

相似文献

1
Cardiac Tissue Chips (CTCs) for Modeling Cardiovascular Disease.
IEEE Trans Biomed Eng. 2019 Dec;66(12):3436-3443. doi: 10.1109/TBME.2019.2905763. Epub 2019 Mar 18.
3
Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing.
Adv Healthc Mater. 2013 Apr;2(4):534-9. doi: 10.1002/adhm.201200299. Epub 2012 Nov 2.
4
Microfluidic cardiac cell culture model (μCCCM).
Anal Chem. 2010 Sep 15;82(18):7581-7. doi: 10.1021/ac1012893.
5
6
Acute Response of Engineered Cardiac Tissue to Pressure and Stretch.
Cells Tissues Organs. 2023;212(4):352-362. doi: 10.1159/000525250. Epub 2022 May 31.
9
Wall stress and patterns of hypertrophy in the human left ventricle.
J Clin Invest. 1975 Jul;56(1):56-64. doi: 10.1172/JCI108079.
10
Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy.
Biomed Pharmacother. 2018 Dec;108:1347-1356. doi: 10.1016/j.biopha.2018.09.146. Epub 2018 Oct 4.

引用本文的文献

2
Harnessing stem cell and lineage reprogramming technology to treat cardiac fibrosis.
Cell Regen. 2023 Dec 11;12(1):39. doi: 10.1186/s13619-023-00182-7.
3
Research trends in cardiovascular tissue engineering from 1992 to 2022: a bibliometric analysis.
Front Cardiovasc Med. 2023 Aug 1;10:1208227. doi: 10.3389/fcvm.2023.1208227. eCollection 2023.
5
Dynamic and static biomechanical traits of cardiac fibrosis.
Front Bioeng Biotechnol. 2022 Oct 31;10:1042030. doi: 10.3389/fbioe.2022.1042030. eCollection 2022.
6
Multicellular 3D Models for the Study of Cardiac Fibrosis.
Int J Mol Sci. 2022 Oct 1;23(19):11642. doi: 10.3390/ijms231911642.
8
Current strategies of mechanical stimulation for maturation of cardiac microtissues.
Biophys Rev. 2021 Sep 10;13(5):717-727. doi: 10.1007/s12551-021-00841-6. eCollection 2021 Oct.
10
Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing.
Micromachines (Basel). 2021 Jan 28;12(2):139. doi: 10.3390/mi12020139.

本文引用的文献

1
Chronic Pressure Overload Induces Cardiac Hypertrophy and Fibrosis via Increases in SGLT1 and IL-18 Gene Expression in Mice.
Int Heart J. 2018 Sep 26;59(5):1123-1133. doi: 10.1536/ihj.17-565. Epub 2018 Aug 11.
2
Advanced maturation of human cardiac tissue grown from pluripotent stem cells.
Nature. 2018 Apr;556(7700):239-243. doi: 10.1038/s41586-018-0016-3. Epub 2018 Apr 4.
3
Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues.
J Mol Cell Cardiol. 2018 May;118:147-158. doi: 10.1016/j.yjmcc.2018.03.016. Epub 2018 Mar 28.
5
Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
Circ Res. 2017 Dec 8;121(12):1323-1330. doi: 10.1161/CIRCRESAHA.117.311920. Epub 2017 Oct 2.
6
Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure.
Am J Physiol Heart Circ Physiol. 2017 Jul 1;313(1):H32-H45. doi: 10.1152/ajpheart.00027.2017. Epub 2017 Apr 28.
9
Modeling the fluid-dynamics and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure.
Med Eng Phys. 2016 Aug;38(8):725-32. doi: 10.1016/j.medengphy.2016.04.016. Epub 2016 May 14.
10
Stromal Cells in Dense Collagen Promote Cardiomyocyte and Microvascular Patterning in Engineered Human Heart Tissue.
Tissue Eng Part A. 2016 Apr;22(7-8):633-44. doi: 10.1089/ten.TEA.2015.0482. Epub 2016 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验