Suppr超能文献

后负荷促进人诱导多能干细胞衍生的心肌细胞在工程心脏组织中的成熟。

Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues.

机构信息

Department of Mechanical Engineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA.

Department of Pathology, University of Washington, Seattle 98109, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA.

出版信息

J Mol Cell Cardiol. 2018 May;118:147-158. doi: 10.1016/j.yjmcc.2018.03.016. Epub 2018 Mar 28.

Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) grown in engineered heart tissue (EHT) can be used for drug screening, disease modeling, and heart repair. However, the immaturity of hiPSC-CMs currently limits their use. Because mechanical loading increases during development and facilitates cardiac maturation, we hypothesized that afterload would promote maturation of EHTs. To test this we developed a system in which EHTs are suspended between a rigid post and a flexible one, whose resistance to contraction can be modulated by applying braces of varying length. These braces allow us to adjust afterload conditions over two orders of magnitude by increasing the flexible post resistance from 0.09 up to 9.2 μN/μm. After three weeks in culture, optical tracking of post deflections revealed that auxotonic twitch forces increased in correlation with the degree of afterload, whereas twitch velocities decreased with afterload. Consequently, the power and work of the EHTs were maximal under intermediate afterloads. When studied isometrically, the inotropy of EHTs increased with afterload up to an intermediate resistance (0.45 μN/μm) and then plateaued. Applied afterload increased sarcomere length, cardiomyocyte area and elongation, which are hallmarks of maturation. Furthermore, progressively increasing the level of afterload led to improved calcium handling, increased expression of several key markers of cardiac maturation, including a shift from fetal to adult ventricular myosin heavy chain isoforms. However, at the highest afterload condition, markers of pathological hypertrophy and fibrosis were also upregulated, although the bulk tissue stiffness remained the same for all levels of applied afterload tested. Together, our results indicate that application of moderate afterloads can substantially improve the maturation of hiPSC-CMs in EHTs, while high afterload conditions may mimic certain aspects of human cardiac pathology resulting from elevated mechanical overload.

摘要

人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)在工程心脏组织(EHT)中生长,可用于药物筛选、疾病建模和心脏修复。然而,hiPSC-CM 的不成熟目前限制了它们的应用。由于机械负荷在发育过程中增加,并促进心脏成熟,我们假设后负荷会促进 EHT 的成熟。为了验证这一点,我们开发了一种系统,其中 EHT 悬挂在刚性柱和柔性柱之间,通过施加不同长度的支具来调节柔性柱的收缩阻力,从而可以调节后负荷条件。这些支具使我们能够通过将柔性柱阻力从 0.09 增加到 9.2 μN/μm,将后负荷条件调节两个数量级。在培养三周后,通过对柱偏移的光学跟踪发现,辅助性抽搐力与后负荷程度呈正相关增加,而抽搐速度随后负荷而降低。因此,EHT 的功率和功在中等后负荷下达到最大值。当等长研究时,EHT 的变力性随后负荷增加到中等阻力(0.45 μN/μm),然后趋于平稳。施加后负荷会增加肌节长度、心肌细胞面积和伸长,这是成熟的标志。此外,逐渐增加后负荷水平会导致钙处理得到改善,心脏成熟的几个关键标志物的表达增加,包括从胎儿型向成人型心室肌球蛋白重链同工型的转变。然而,在最高后负荷条件下,病理肥大和纤维化的标志物也上调,尽管所有测试的应用后负荷水平的组织整体刚度保持不变。总之,我们的结果表明,适度的后负荷可以显著改善 EHT 中 hiPSC-CM 的成熟,而高后负荷条件可能模拟由机械过载增加引起的某些人类心脏病理学特征。

相似文献

1
Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues.
J Mol Cell Cardiol. 2018 May;118:147-158. doi: 10.1016/j.yjmcc.2018.03.016. Epub 2018 Mar 28.
2
Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications.
Acta Biomater. 2019 Jul 1;92:145-159. doi: 10.1016/j.actbio.2019.05.016. Epub 2019 May 7.
3
Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium.
Theranostics. 2021 Apr 15;11(13):6138-6153. doi: 10.7150/thno.54999. eCollection 2021.
4
Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation.
J Mol Cell Cardiol. 2014 Sep;74:151-61. doi: 10.1016/j.yjmcc.2014.05.009. Epub 2014 May 19.
5
Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology.
Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1670-H1686. doi: 10.1152/ajpheart.00941.2020. Epub 2021 Feb 19.
7
Dynamic Control of Contractile Force in Engineered Heart Tissue.
IEEE Trans Biomed Eng. 2023 Jul;70(7):2237-2245. doi: 10.1109/TBME.2023.3239594. Epub 2023 Jun 19.
9
Human Engineered Heart Tissue: Analysis of Contractile Force.
Stem Cell Reports. 2016 Jul 12;7(1):29-42. doi: 10.1016/j.stemcr.2016.04.011. Epub 2016 May 19.
10
Generation of a human iPSC-derived cardiomyocyte/fibroblast engineered heart tissue model.
F1000Res. 2024 Feb 12;12:1224. doi: 10.12688/f1000research.139482.1. eCollection 2023.

引用本文的文献

1
Integrative approaches in cardiac tissue engineering: Bridging cellular complexity to create accurate physiological models.
iScience. 2025 Jun 25;28(8):113003. doi: 10.1016/j.isci.2025.113003. eCollection 2025 Aug 15.
3
Tetanus-driven biohybrid multijoint robots powered by muscle rings with enhanced contractile force.
Sci Adv. 2025 Jul 18;11(29):eadu9962. doi: 10.1126/sciadv.adu9962. Epub 2025 Jul 16.
4
Developmental cues from epicardial cells simultaneously promote cardiomyocyte proliferation and electrochemical maturation.
Stem Cell Reports. 2025 Aug 12;20(8):102572. doi: 10.1016/j.stemcr.2025.102572. Epub 2025 Jul 3.
7
Suspended Tissue Open Microfluidic Patterning (STOMP).
Adv Sci (Weinh). 2025 Apr 29:e2501148. doi: 10.1002/advs.202501148.
9
Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces.
IEEE Rev Biomed Eng. 2024 Dec 9;PP. doi: 10.1109/RBME.2024.3514378.
10
FORCETRACKER: A versatile tool for standardized assessment of tissue contractile properties in 3D Heart-on-Chip platforms.
PLoS One. 2025 Feb 13;20(2):e0314985. doi: 10.1371/journal.pone.0314985. eCollection 2025.

本文引用的文献

4
Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.
Circulation. 2017 May 9;135(19):1832-1847. doi: 10.1161/CIRCULATIONAHA.116.024145. Epub 2017 Feb 6.
5
Induced pluripotent stem cell technology: a decade of progress.
Nat Rev Drug Discov. 2017 Feb;16(2):115-130. doi: 10.1038/nrd.2016.245. Epub 2016 Dec 16.
6
Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells.
Nat Protoc. 2017 Jan;12(1):15-31. doi: 10.1038/nprot.2016.153. Epub 2016 Dec 1.
7
Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing.
Nat Mater. 2017 Mar;16(3):303-308. doi: 10.1038/nmat4782. Epub 2016 Oct 24.
9
Real-Time Force and Frequency Analysis of Engineered Human Heart Tissue Derived from Induced Pluripotent Stem Cells Using Magnetic Sensing.
Tissue Eng Part C Methods. 2016 Oct;22(10):932-940. doi: 10.1089/ten.TEC.2016.0257. Epub 2016 Sep 28.
10
CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.
BMC Bioinformatics. 2015 Oct 26;16:344. doi: 10.1186/s12859-015-0782-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验