IEEE Trans Nanobioscience. 2019 Apr;18(2):226-229. doi: 10.1109/TNB.2019.2905469. Epub 2019 Mar 15.
Ability to direct neuronal growth not only carries great potential for treating neural conditions-for example, bridging traumatically shattered connections-but would also be an exquisite tool for bionic applications that require a physical interface between neurons and electronics. A testing platform is needed to better understand axonal guidance in the context of a specific in vivo application. Versatility of 3D printing technology allows tailoring to researcher needs, both in vitro and in vivo. In this paper, we establish a fibro-neuronal co-culture inspired by our neural interface research and demonstrate axon alignment on a textured substrate fabricated with a common, versatile 3D-printing set-up.
引导神经元生长的能力不仅在治疗神经疾病方面具有巨大的潜力,例如,桥接创伤性断裂的连接,而且对于需要神经元和电子之间物理接口的仿生应用来说,也是一种极好的工具。需要一个测试平台来更好地理解特定体内应用环境中的轴突导向。3D 打印技术的多功能性允许根据研究人员的需求进行定制,无论是在体外还是体内。在本文中,我们根据我们的神经界面研究建立了一种纤维-神经元共培养模型,并展示了在使用常见的通用 3D 打印设备制造的纹理化基底上的轴突对齐。