Suppr超能文献

多传感器融合方法在无袖带血压测量中的应用。

Multi-Sensor Fusion Approach for Cuff-Less Blood Pressure Measurement.

出版信息

IEEE J Biomed Health Inform. 2020 Jan;24(1):79-91. doi: 10.1109/JBHI.2019.2901724. Epub 2019 Mar 15.

Abstract

Ambulatory blood pressure (BP) provides valuable information for cardiovascular risk assessment. The present cuff-based devices are intrusive for long-term BP monitoring, whereas cuff-less BP measurement methods based on pulse transit time or multi-parameter are inferior in robustness and reliability by using electrocardiogram (ECG) and photoplethysmogram signals. This study examined a multi-sensor fusion-based platform and algorithm for systolic BP (SBP), mean arterial pressure (MAP), and diastolic BP (DBP) estimation. The proposed multi-sensor platform was comprised of one ECG sensor and two pulse pressure wave sensors for simultaneous signal collection. After extracting 35 features from the collected signals, a weakly supervised feature selection method was proposed for dimension reduction because the reference oscillometric technique-based BP are intermittent and can be redeemed as coarse-grained labels. BP models were then established using a multi-instance regression algorithm. A total of 85 participants including 17 hypertensive and 12 hypotensive patients were enrolled. Experimental results showed that the proposed approach exhibited good accuracy for diverse population with an estimation error of 1.62 ± 7.76 mmHg for SBP, 1.53 ± 6.03 mmHg for MAP, and 1.49 ± 5.52 for DBP, which complied with the association for the advancement of medical instrumentation standards in BP estimation. Moreover, the estimation accuracy is with random daily fluctuations rather than long-term degradation through a maximum two-month follow-up period indicated good robustness performance. These results suggest that the proposed approach is with high reliability and robustness and thus provides a novel insight for cuff-less BP measurement.

摘要

动态血压(BP)为心血管风险评估提供了有价值的信息。目前基于袖带的设备在长期 BP 监测中具有侵入性,而基于脉搏传导时间或多参数的无袖带 BP 测量方法在使用心电图(ECG)和光容积脉搏波信号时在稳健性和可靠性方面较差。本研究探讨了一种基于多传感器融合的平台和算法,用于估计收缩压(SBP)、平均动脉压(MAP)和舒张压(DBP)。所提出的多传感器平台由一个 ECG 传感器和两个脉搏压力波传感器组成,用于同时采集信号。从采集的信号中提取 35 个特征后,提出了一种弱监督特征选择方法进行降维,因为基于参考示波法的 BP 是间歇性的,可以作为粗粒度标签赎回。然后使用多实例回归算法建立 BP 模型。共纳入 85 名参与者,包括 17 名高血压患者和 12 名低血压患者。实验结果表明,该方法对不同人群具有良好的准确性,SBP 的估计误差为 1.62 ± 7.76 mmHg,MAP 的估计误差为 1.53 ± 6.03 mmHg,DBP 的估计误差为 1.49 ± 5.52 mmHg,符合医疗仪器协会在 BP 估计方面的标准。此外,通过最大两个月的随访期,该方法的估计精度具有随机日常波动而不是长期退化,表明具有良好的稳健性。这些结果表明,该方法具有较高的可靠性和稳健性,为无袖带 BP 测量提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验