Li Zhe, Bai Jiangtao, Cao Xiangyu, Chen Xing, Song Haiqing, Tian Peng, Wei Ran, Feng Jinchao, Liu Pengyu, Jia Kebin
1st Medical Center of Chinese PLA General Hospital, Department of Neurology, Beijing, China.
Beihang University, School of Engineering Medicine, Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, China.
APL Bioeng. 2025 Jul 21;9(3):036106. doi: 10.1063/5.0266243. eCollection 2025 Sep.
Blood pressure (BP) is an important parameter of human health, since hypertension is a major risk factor of the cardiovascular system. Nowadays, the continuous measurement of BP is only possible with an invasive measurement method using catheter as the gold standard. Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamics in deep tissues, which can reliably provide a blood flow index whose changes are proportional to relative changes in tissue blood flow (BF). This study presents a new solution that enables to use tissue BF measured by our developed DCS device for continuous BP monitoring via deep learning approach. We evaluated the utility of tissue BF for continuous BP estimation via a proposed BFBP model. experiments (12 subjects) were performed to collect tissue BF and continuous BP data simultaneously to verify the feasibility of BFBP model. The mean absolute errors of the continuous BP estimates were 5.54 ± 5.03 mm Hg for systolic BP, 1.71 ± 2.86 mm Hg for diastolic BP, indicating that DCS provides a novel way for continuous BP estimation. Moreover, we compared the proposed BFBP model with other models based on an open BP dataset from UC Irvine database. The experimental results indicated that the estimated continuous BP achieves grade A for both systolic blood pressure and diastolic blood pressure according to the British Hypertension Society standard. Ultimately, experimental results show that the proposed method enables feasible continuous estimation of BP using noninvasive tissue BF measured by our developed DCS device based on the proposed BFBP model.
血压(BP)是人体健康的一个重要参数,因为高血压是心血管系统的主要危险因素。目前,只有采用侵入性测量方法,以导管作为金标准,才能实现血压的连续测量。扩散相关光谱法(DCS)是评估深部组织微血管血流动力学的有力工具,它能够可靠地提供一个血流指数,其变化与组织血流量(BF)的相对变化成正比。本研究提出了一种新的解决方案,能够通过深度学习方法,将我们开发的DCS设备测量的组织血流量用于连续血压监测。我们通过提出的BFBP模型评估了组织血流量在连续血压估计中的效用。进行了实验(12名受试者),同时收集组织血流量和连续血压数据,以验证BFBP模型的可行性。收缩压连续血压估计的平均绝对误差为5.54±5.03毫米汞柱,舒张压为1.71±2.86毫米汞柱,这表明DCS为连续血压估计提供了一种新方法。此外,我们基于加州大学欧文分校数据库的一个开放血压数据集,将提出的BFBP模型与其他模型进行了比较。实验结果表明,根据英国高血压学会标准,估计的连续血压在收缩压和舒张压方面均达到A级。最终,实验结果表明,所提出的方法能够基于所提出的BFBP模型,使用我们开发的DCS设备测量的无创组织血流量实现可行的连续血压估计。
2025-1
Cochrane Database Syst Rev. 2023-1-16
Cochrane Database Syst Rev. 2018-1-22
Cochrane Database Syst Rev. 2017-4-5
Cochrane Database Syst Rev. 2015-8-26
IEEE J Biomed Health Inform. 2024-10
Adv Physiol Educ. 2023-9-1
Sensors (Basel). 2023-4-21
J Clin Med. 2023-1-31
Sensors (Basel). 2022-5-23
IEEE J Biomed Health Inform. 2022-8
Healthcare (Basel). 2022-3-16
IEEE J Biomed Health Inform. 2022-5