文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用扩散相关光谱法测量组织血流进行连续无创血压估计。

Continuous noninvasive blood pressure estimation using tissue blood flow measured by diffuse correlation spectroscopy.

作者信息

Li Zhe, Bai Jiangtao, Cao Xiangyu, Chen Xing, Song Haiqing, Tian Peng, Wei Ran, Feng Jinchao, Liu Pengyu, Jia Kebin

机构信息

1st Medical Center of Chinese PLA General Hospital, Department of Neurology, Beijing, China.

Beihang University, School of Engineering Medicine, Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, China.

出版信息

APL Bioeng. 2025 Jul 21;9(3):036106. doi: 10.1063/5.0266243. eCollection 2025 Sep.


DOI:10.1063/5.0266243
PMID:40697813
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12283116/
Abstract

Blood pressure (BP) is an important parameter of human health, since hypertension is a major risk factor of the cardiovascular system. Nowadays, the continuous measurement of BP is only possible with an invasive measurement method using catheter as the gold standard. Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamics in deep tissues, which can reliably provide a blood flow index whose changes are proportional to relative changes in tissue blood flow (BF). This study presents a new solution that enables to use tissue BF measured by our developed DCS device for continuous BP monitoring via deep learning approach. We evaluated the utility of tissue BF for continuous BP estimation via a proposed BFBP model. experiments (12 subjects) were performed to collect tissue BF and continuous BP data simultaneously to verify the feasibility of BFBP model. The mean absolute errors of the continuous BP estimates were 5.54 ± 5.03 mm Hg for systolic BP, 1.71 ± 2.86 mm Hg for diastolic BP, indicating that DCS provides a novel way for continuous BP estimation. Moreover, we compared the proposed BFBP model with other models based on an open BP dataset from UC Irvine database. The experimental results indicated that the estimated continuous BP achieves grade A for both systolic blood pressure and diastolic blood pressure according to the British Hypertension Society standard. Ultimately, experimental results show that the proposed method enables feasible continuous estimation of BP using noninvasive tissue BF measured by our developed DCS device based on the proposed BFBP model.

摘要

血压(BP)是人体健康的一个重要参数,因为高血压是心血管系统的主要危险因素。目前,只有采用侵入性测量方法,以导管作为金标准,才能实现血压的连续测量。扩散相关光谱法(DCS)是评估深部组织微血管血流动力学的有力工具,它能够可靠地提供一个血流指数,其变化与组织血流量(BF)的相对变化成正比。本研究提出了一种新的解决方案,能够通过深度学习方法,将我们开发的DCS设备测量的组织血流量用于连续血压监测。我们通过提出的BFBP模型评估了组织血流量在连续血压估计中的效用。进行了实验(12名受试者),同时收集组织血流量和连续血压数据,以验证BFBP模型的可行性。收缩压连续血压估计的平均绝对误差为5.54±5.03毫米汞柱,舒张压为1.71±2.86毫米汞柱,这表明DCS为连续血压估计提供了一种新方法。此外,我们基于加州大学欧文分校数据库的一个开放血压数据集,将提出的BFBP模型与其他模型进行了比较。实验结果表明,根据英国高血压学会标准,估计的连续血压在收缩压和舒张压方面均达到A级。最终,实验结果表明,所提出的方法能够基于所提出的BFBP模型,使用我们开发的DCS设备测量的无创组织血流量实现可行的连续血压估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/936d7a779fbc/ABPID9-000009-036106_1-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/2dea247d8b20/ABPID9-000009-036106_1-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/0ff8749ce658/ABPID9-000009-036106_1-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/3e2e1ce6470d/ABPID9-000009-036106_1-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/7583b696566f/ABPID9-000009-036106_1-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/e28cf1adace7/ABPID9-000009-036106_1-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/30ca9e2034f2/ABPID9-000009-036106_1-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/936d7a779fbc/ABPID9-000009-036106_1-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/2dea247d8b20/ABPID9-000009-036106_1-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/0ff8749ce658/ABPID9-000009-036106_1-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/3e2e1ce6470d/ABPID9-000009-036106_1-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/7583b696566f/ABPID9-000009-036106_1-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/e28cf1adace7/ABPID9-000009-036106_1-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/30ca9e2034f2/ABPID9-000009-036106_1-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e7f/12283116/936d7a779fbc/ABPID9-000009-036106_1-g007.jpg

相似文献

[1]
Continuous noninvasive blood pressure estimation using tissue blood flow measured by diffuse correlation spectroscopy.

APL Bioeng. 2025-7-21

[2]
Neonatal Hypertension

2025-1

[3]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[4]
Altered dietary salt intake for preventing diabetic kidney disease and its progression.

Cochrane Database Syst Rev. 2023-1-16

[5]
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.

Health Technol Assess. 2024-8

[6]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[7]
Blood pressure-lowering treatment for prevention of major cardiovascular diseases in people with and without type 2 diabetes: an individual participant-level data meta-analysis.

Lancet Diabetes Endocrinol. 2022-9

[8]
Systemic Inflammatory Response Syndrome

2025-1

[9]
Blood pressure lowering efficacy of renin inhibitors for primary hypertension.

Cochrane Database Syst Rev. 2017-4-5

[10]
Blood pressure lowering efficacy of dual alpha and beta blockers for primary hypertension.

Cochrane Database Syst Rev. 2015-8-26

本文引用的文献

[1]
Exploring the limitations of blood pressure estimation using the photoplethysmography signal.

Physiol Meas. 2025-4-22

[2]
Comparing adaptations from blood flow restriction exercise training using regulated or unregulated pressure systems: A systematic review and meta-analysis.

Clin Rehabil. 2024-11

[3]
OVAR-BPnet: A General Pulse Wave Deep Learning Approach for Cuffless Blood Pressure Measurement.

IEEE J Biomed Health Inform. 2024-10

[4]
Flow down gradients: the problem of pressure in this physiology core concept.

Adv Physiol Educ. 2023-9-1

[5]
A PPG-Based Calibration-Free Cuffless Blood Pressure Estimation Method Using Cardiovascular Dynamics.

Sensors (Basel). 2023-4-21

[6]
Controls of Central and Peripheral Blood Pressure and Hemorrhagic/Hypovolemic Shock.

J Clin Med. 2023-1-31

[7]
A Review of Noninvasive Methodologies to Estimate the Blood Pressure Waveform.

Sensors (Basel). 2022-5-23

[8]
DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.

IEEE J Biomed Health Inform. 2022-8

[9]
Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review.

Healthcare (Basel). 2022-3-16

[10]
Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning.

IEEE J Biomed Health Inform. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索