The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
Department of Chemistry, University of Southern California, Los Angeles, California.
PLoS Comput Biol. 2019 Mar 20;15(3):e1006882. doi: 10.1371/journal.pcbi.1006882. eCollection 2019 Mar.
Zinc is a vital trace element crucial for the proper function of some 3,000 cellular proteins. Specifically, zinc is essential for key physiological processes including nucleic acid metabolism, regulation of gene expression, signal transduction, cell division, immune- and nervous system functions, wound healing, and apoptosis. Consequently, impairment of zinc homeostasis disrupts key cellular functions resulting in various human pathologies. Mammalian zinc transport proceeds via two transporter families ZnT and ZIP. However, the detailed mechanism of action of ZnT2, which is responsible for vesicular zinc accumulation and zinc secretion into breast milk during lactation, is currently unknown. Moreover, although the putative coupling of zinc transport to the proton gradient in acidic vesicles has been suggested, it has not been conclusively established. Herein we modeled the mechanism of action of ZnT2 and demonstrated both computationally and experimentally, using functional zinc transport assays, that ZnT2 is indeed a proton-coupled zinc antiporter. Bafilomycin A1, a specific inhibitor of vacuolar-type proton ATPase (V-ATPase) which alkalizes acidic vesicles, abolished ZnT2-dependent zinc transport into intracellular vesicles. Moreover, using LysoTracker Red and Lyso-pHluorin, we further showed that upon transient ZnT2 overexpression in intracellular vesicles and addition of exogenous zinc, the vesicular pH underwent alkalization, presumably due to a proton-zinc antiport; this phenomenon was reversed in the presence of TPEN, a specific zinc chelator. Finally, based on computational energy calculations, we propose that ZnT2 functions as an antiporter with a stoichiometry of 2H+/Zn2+ ion. Hence, ZnT2 is a proton motive force-driven, electroneutral vesicular zinc exchanger, concentrating zinc in acidic vesicles on the expense of proton extrusion to the cytoplasm.
锌是一种重要的微量元素,对于大约 3000 种细胞蛋白的正常功能至关重要。具体来说,锌对于包括核酸代谢、基因表达调控、信号转导、细胞分裂、免疫和神经系统功能、伤口愈合和细胞凋亡在内的关键生理过程是必需的。因此,锌稳态的破坏会扰乱关键的细胞功能,导致各种人类疾病。哺乳动物的锌转运通过两种转运体家族 ZnT 和 ZIP 进行。然而,目前尚不清楚负责哺乳期间乳泡中锌积累和锌分泌的 ZnT2 的详细作用机制。此外,尽管已经提出了锌转运与酸性囊泡中的质子梯度的偶联,但尚未得到明确证实。在此,我们模拟了 ZnT2 的作用机制,并通过功能性锌转运测定实验和计算证明,ZnT2 确实是一种质子偶联的锌反向转运体。巴弗洛霉素 A1 是一种特异性的液泡型质子 ATP 酶(V-ATPase)抑制剂,可使酸性囊泡碱化,从而消除 ZnT2 依赖的锌向细胞内囊泡的转运。此外,使用 LysoTracker Red 和 Lyso-pHluorin,我们进一步表明,在细胞内囊泡中转染瞬时过表达的 ZnT2 并加入外源性锌后,囊泡 pH 值发生碱化,可能是由于质子-锌反向转运;在存在特异性锌螯合剂 TPEN 的情况下,这种现象会逆转。最后,基于计算能量计算,我们提出 ZnT2 作为一种 2H+/Zn2+ 离子对的反向转运体发挥作用。因此,ZnT2 是一种质子动力驱动的电中性囊泡锌交换器,通过将质子排出到细胞质来集中酸性囊泡中的锌。