Suppr超能文献

保守残基控制哺乳动物甜味受体的 T1R3 特异性变构信号通路。

Conserved Residues Control the T1R3-Specific Allosteric Signaling Pathway of the Mammalian Sweet-Taste Receptor.

机构信息

Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France.

Monell Chemical Senses Center, Philadelphia, PA, USA.

出版信息

Chem Senses. 2019 May 29;44(5):303-310. doi: 10.1093/chemse/bjz015.

Abstract

Mammalian sensory systems detect sweet taste through the activation of a single heteromeric T1R2/T1R3 receptor belonging to class C G-protein-coupled receptors. Allosteric ligands are known to interact within the transmembrane domain, yet a complete view of receptor activation remains elusive. By combining site-directed mutagenesis with computational modeling, we investigate the structure and dynamics of the allosteric binding pocket of the T1R3 sweet-taste receptor in its apo form, and in the presence of an allosteric ligand, cyclamate. A novel positively charged residue at the extracellular loop 2 is shown to interact with the ligand. Molecular dynamics simulations capture significant differences in the behavior of a network of conserved residues with and without cyclamate, although they do not directly interact with the allosteric ligand. Structural models show that they adopt alternate conformations, associated with a conformational change in the transmembrane region. Site-directed mutagenesis confirms that these residues are unequivocally involved in the receptor function and the allosteric signaling mechanism of the sweet-taste receptor. Similar to a large portion of the transmembrane domain, they are highly conserved among mammals, suggesting an activation mechanism that is evolutionarily conserved. This work provides a structural basis for describing the dynamics of the receptor, and for the rational design of new sweet-taste modulators.

摘要

哺乳动物的感觉系统通过激活属于 C 类 G 蛋白偶联受体的单一异源 T1R2/T1R3 受体来检测甜味。已知变构配体在跨膜结构域内相互作用,但受体激活的全貌仍然难以捉摸。通过结合定点突变和计算建模,我们研究了 T1R3 甜味受体在apo 形式和存在变构配体环己胺酸时的变构结合口袋的结构和动力学。一个新的带正电荷的残基位于细胞外环 2 上,被证明与配体相互作用。分子动力学模拟捕捉到在有和没有环己胺酸的情况下,一组保守残基的行为存在显著差异,尽管它们不直接与变构配体相互作用。结构模型表明,它们采用了不同的构象,与跨膜区域的构象变化相关。定点突变证实,这些残基明确参与了受体功能和甜味受体的变构信号机制。与大部分跨膜结构域类似,它们在哺乳动物中高度保守,这表明激活机制是进化保守的。这项工作为描述受体的动力学以及合理设计新型甜味调节剂提供了结构基础。

相似文献

2
Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3.
J Biol Chem. 2005 Oct 7;280(40):34296-305. doi: 10.1074/jbc.M505255200. Epub 2005 Aug 2.
3
Modeling and Structural Characterization of the Sweet Taste Receptor Heterodimer.
ACS Chem Neurosci. 2019 Nov 20;10(11):4579-4592. doi: 10.1021/acschemneuro.9b00438. Epub 2019 Oct 3.
5
Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.
Chem Senses. 2015 Oct;40(8):577-86. doi: 10.1093/chemse/bjv045.
6
Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.
PLoS One. 2015 Apr 8;10(4):e0124030. doi: 10.1371/journal.pone.0124030. eCollection 2015.
7
The heterodimeric sweet taste receptor has multiple potential ligand binding sites.
Curr Pharm Des. 2006;12(35):4591-600. doi: 10.2174/138161206779010350.
8
Different functional roles of T1R subunits in the heteromeric taste receptors.
Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14258-63. doi: 10.1073/pnas.0404384101. Epub 2004 Sep 7.
9
Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds.
PLoS One. 2012;7(4):e35380. doi: 10.1371/journal.pone.0035380. Epub 2012 Apr 20.
10
Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor).
J Biol Chem. 2013 Dec 27;288(52):36863-77. doi: 10.1074/jbc.M113.494443. Epub 2013 Nov 8.

引用本文的文献

1
Advances in cell-based biosensors: Transforming food flavor evaluation with novel approaches.
Food Chem X. 2025 Mar 1;26:102336. doi: 10.1016/j.fochx.2025.102336. eCollection 2025 Feb.
2
Inosine-5'-monophosphate interacts with the TAS1R3 subunit to enhance sweet taste detection.
Food Chem (Oxf). 2025 Feb 11;10:100246. doi: 10.1016/j.fochms.2025.100246. eCollection 2025 Jun.

本文引用的文献

2
Molecular Switches of Allosteric Modulation of the Metabotropic Glutamate 2 Receptor.
Structure. 2017 Jul 5;25(7):1153-1162.e4. doi: 10.1016/j.str.2017.05.021. Epub 2017 Jun 22.
3
Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2568-2573. doi: 10.1073/pnas.1700001114. Epub 2017 Feb 22.
4
The anatomy of mammalian sweet taste receptors.
Proteins. 2017 Feb;85(2):332-341. doi: 10.1002/prot.25228. Epub 2017 Jan 5.
5
Molecular mechanism of sweetness sensation.
Physiol Behav. 2016 Oct 1;164(Pt B):453-463. doi: 10.1016/j.physbeh.2016.03.015. Epub 2016 Mar 15.
6
Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus).
PLoS One. 2015 Oct 21;10(10):e0139670. doi: 10.1371/journal.pone.0139670. eCollection 2015.
7
Dynamics and modulation of metabotropic glutamate receptors.
Curr Opin Pharmacol. 2015 Feb;20:95-101. doi: 10.1016/j.coph.2014.12.001. Epub 2014 Dec 17.
8
Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer.
Nat Chem Biol. 2015 Feb;11(2):134-40. doi: 10.1038/nchembio.1711. Epub 2014 Dec 15.
9
Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain.
Nature. 2014 Jul 31;511(7511):557-62. doi: 10.1038/nature13396. Epub 2014 Jul 6.
10
Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator.
Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验