Suppr超能文献

经验内容作为评估模型的标准。

Empirical content as a criterion for evaluating models.

作者信息

Jekel Marc

机构信息

Social Cognition Center Cologne, University of Cologne, Richard-Strauss-Straße 2, 50931, Cologne, Germany.

出版信息

Cogn Process. 2019 May;20(2):273-275. doi: 10.1007/s10339-019-00913-2. Epub 2019 Mar 20.

Abstract

Hypotheses derived from models can be tested in an empirical study: If the model reliably fails to predict behavior, it can be dismissed or modified. Models can also be evaluated before data are collected: More useful models have a high level of empirical content (Popper in Logik der Forschung, Mohr Siebeck, Tübingen, 1934), i.e., they make precise predictions (degree of precision) for many events (level of universality). I apply these criteria to reflect on some critical aspects of Kirsch's (Cognit Process, 2019. https://doi.org/10.1007/s10339-019-00904-3 ) unifying computational model of decision making.

摘要

从模型得出的假设可以在实证研究中进行检验

如果该模型始终无法预测行为,那么它可以被摒弃或修改。模型也可以在收集数据之前进行评估:更有用的模型具有较高的实证内容水平(波普尔《科学发现的逻辑》,莫尔·西伯克出版社,图宾根,1934年),也就是说,它们对许多事件(普遍性水平)做出精确预测(精确程度)。我运用这些标准来思考基尔希(《认知过程》,2019年。https://doi.org/10.1007/s10339-019-00904-3 )关于决策的统一计算模型的一些关键方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验