Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
Chem Soc Rev. 2019 Apr 1;48(7):2216-2264. doi: 10.1039/c8cs00897c.
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
分子催化在自然和人工光合作用(AP)中都起着至关重要的作用。然而,由于对基于分子催化剂的设备的长期稳定性存在怀疑,近年来分子催化在 AP 领域的发展逐渐放缓。本综述总结了基于分子催化剂的 AP 的发展历史,包括 AP 的基本原理、水氧化、质子还原和 CO2 还原的分子催化剂以及基于分子催化剂的 AP 设备,并对分子催化剂的优点、挑战和稳定性进行了分析。通过这篇综述,我们旨在强调以下几点:(i)对分子催化的研究是获得具有出色本征活性的原子经济催化剂的最有前途的方法之一;(ii)目前,将分子催化剂有效异质化是将分子催化应用于 AP 设备的主要挑战;(iii)开发分子催化剂是解决实际太阳能燃料生产中涉及的催化问题的一种很有前途的方法。在基于分子催化的 AP 中,已经取得了很多成就,但在长期稳定性和异质化技术方面仍面临更多挑战。