Singh Ajeet Kumar, Roy Lisa
Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar - 751013 India.
ACS Omega. 2024 Feb 23;9(9):9886-9920. doi: 10.1021/acsomega.3c07847. eCollection 2024 Mar 5.
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found HO. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2HO → O + 4H + 4e comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
对碳中和可持续能源方案的需求增加,再加上气候威胁,促使人们设计和探索新方法,以化学键的形式将间歇性太阳能储存在分子和材料中。在这种背景下,受生物过程的启发,人工光合作用作为一种将太阳能转化为来自丰富水源的化学燃料的有前景的解决方案,已引起了广泛关注。在人工光合作用的两个氧化还原半反应中,根据2H₂O → O₂ + 4H⁺ + 4e⁻进行的水的四电子氧化是主要瓶颈,也是可持续能源生产的严重障碍。因此,设计新的催化平台,结合分子、材料和生物催化的传统概念,并能够整合光系统II中天然析氧复合物的功能结构,无疑将有助于实现这一目标。在这篇综述中,我们讨论了理想的水氧化催化剂(WOCs)构建方面的进展,首先介绍了利用地球上丰富的过渡金属离子进行生物设计的独创性,然后扩展到分子、超分子和混合方法,模糊了任何现有的化学或概念界限。我们关注对最先进的含均相过渡金属分子WOCs的几何、电子和机理理解,并总结了限制因素,如配体的选择、环境不友好且昂贵的贵金属的主导地位、金属上高价态的必要性、中间体的热力学不稳定性以及反应的可逆性,这些因素在构建稳健且高效的水氧化催化剂时带来了挑战。我们强调,尽管原子效率高的分子WOCs在超分子和混合方法中的明智异质化保留了其迷人的固有反应性,但如何为缓解分子催化中的现有问题提供了有前景的途径。总之,我们的综述有望为基于传统与当代方法协同作用设计新型水氧化催化剂的机遇、挑战和关键因素提供指导原则,这将推动人工光合作用领域的扩展。