Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.
N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.
FEBS Lett. 2019 Apr;593(8):788-798. doi: 10.1002/1873-3468.13366. Epub 2019 Mar 30.
In photosynthetic systems of oxygenic type, plastoquinone (PQ) molecules are reduced by photosystem II (PSII). The turnover of PQ determines the rate of PSII operation. PQ molecules are present in surplus with respect to PSII. In this work, using the pulse amplitude modulation-fluorometry technique, we quantified photo-reducible PQ pools in chloroplasts of two contrasting ecotypes of Tradescantia, acclimated either to low light (~ 100 μmol photons·m ·s , LL) or to high light (~ 1000 μmol photons·m ·s , HL). The LL-grown plants are characterized by higher capacity of rapidly reducible PQ pool ([PQ] /[PSII] ≈ 8) as compared to HL-grown plants of both species ([PQ] /[PSII] ≈ 4). The elevated content of PQ in LL plants favours photosynthetic electron flow at low-solar irradiance.
在产氧光合作用系统中,质体醌 (PQ) 分子由光系统 II (PSII) 还原。PQ 的周转率决定了 PSII 的运转速率。相对于 PSII,PQ 分子的含量过剩。在这项工作中,我们使用脉冲幅度调制荧光法,定量了两种对照生态型的紫露草叶绿体中的可光还原 PQ 库,这些植物分别适应于低光(100 μmol 光子·m ·s ,LL)或高光(1000 μmol 光子·m ·s ,HL)。与两种植物的 HL 生长植株相比,LL 生长的植物具有更高的快速可还原 PQ 库的容量 ([PQ] /[PSII] ≈ 8)。在 LL 植物中 PQ 的含量升高有利于低太阳辐照度下的光合作用电子流。