Kumar Anil, Sevilla Michael D
Department of Chemistry , Oakland University , Rochester , Michigan 48309 , United States.
J Phys Chem A. 2019 Apr 11;123(14):3098-3108. doi: 10.1021/acs.jpca.9b00906. Epub 2019 Apr 2.
One-electron oxidized guanine (G) in DNA generates several short-lived intermediate radicals via proton transfer reactions resulting in the formation of neutral guanine radicals. The identification of these radicals in DNA is of fundamental interest to understand the early stages of DNA damage. Herein, we used time-dependent density functional theory (TD-ωB97XD-PCM/6-31G(3df,p)) to calculate the vertical excitation energies of one-electron oxidized G and G-cytosine (C) base pair in various protonation states: G, G(N1-H), and G(N2-H), as well as G-C, G(N1-H)-(H)C, G(N1-H)-(N4-H)C), G(N1-H)-C, and G(N2-H)-C in aqueous phase. The calculated UV-vis spectra of these radicals are in good agreement with the experiment for the G radical species when the calculated values are red-shifted by 40-70 nm. The present calculations show that the lowest energy transitions of proton transfer species (G(N1-H)-(H)C, G(N1-H)-(N4-H)C, and G(N1-H)-C) are substantially red-shifted in comparison to the spectrum of G-C. The calculated spectrum of G(N2-H)-C shows intense absorption (high oscillator strength), which matches the strong absorption in the experimental spectra of G(N2-H) at 600 nm. The present calculations predict the lowest charge transfer transition of C → G is π → π* in nature and lies in the UV region (3.4-4.3 eV) with small oscillator strength.
DNA中一电子氧化鸟嘌呤(G)通过质子转移反应生成几种短寿命的中间自由基,导致中性鸟嘌呤自由基的形成。在DNA中鉴定这些自由基对于理解DNA损伤的早期阶段具有根本重要性。在此,我们使用含时密度泛函理论(TD-ωB97XD-PCM/6-31G(3df,p))来计算处于各种质子化状态的一电子氧化G和G-胞嘧啶(C)碱基对的垂直激发能:G、G(N1-H)和G(N2-H),以及水相中的G-C、G(N1-H)-(H)C、G(N1-H)-(N4-H)C、G(N1-H)-C和G(N2-H)-C。当计算值红移40 - 70 nm时,这些自由基的计算紫外-可见光谱与G自由基物种实验结果吻合良好。目前的计算表明,与G-C光谱相比,质子转移物种(G(N1-H)-(H)C、G(N1-H)-(N4-H)C和G(N1-H)-C)的最低能量跃迁有显著红移。G(N2-H)-C的计算光谱显示出强烈吸收(高振子强度),这与G(N2-H)实验光谱在600 nm处的强吸收相匹配。目前的计算预测C→G的最低电荷转移跃迁本质上是π→π*,位于紫外区域(3.4 - 4.3 eV),振子强度较小。