Suppr超能文献

含单电子氧化 GC 的 DNA 中的质子迁移平衡:双链内与双链对溶剂去质子化。

Prototropic equilibria in DNA containing one-electron oxidized GC: intra-duplex vs. duplex to solvent deprotonation.

机构信息

Department of Chemistry, Oakland University, Rochester, MI 48309, USA.

出版信息

Phys Chem Chem Phys. 2010;12(20):5353-68. doi: 10.1039/b925496j.

Abstract

By use of ESR and UV-vis spectral studies, this work identifies the protonation states of one-electron oxidized G:C (viz. G˙+:C, G(N1–H)˙:C(+H+), G(N1–H)˙:C, and G(N2-H)˙:C) in a DNA oligomer d[TGCGCGCA]2. Benchmark ESR and UV-vis spectra from one electron oxidized 1-Me-dGuo are employed to analyze the spectral data obtained in one-electron oxidized d[TGCGCGCA]2 at various pHs. At pH ≥7, the initial site of deprotonation of one-electron oxidized d[TGCGCGCA]2 to the surrounding solvent is found to be at N1 forming G(N1–H)˙:C at 155 K. However, upon annealing to 175 K, the site of deprotonation to the solvent shifts to an equilibrium mixture of G(N1–H)˙:C and G(N2–H)˙:C. For the first time, the presence of G(N2–H)˙:C in a ds DNA-oligomer is shown to be easily distinguished from the other prototropic forms, owing to its readily observable nitrogen hyperfine coupling (Azz(N2) = 16 G). In addition, for the oligomer in H2O, an additional 8 G N2–H proton HFCC is found. This ESR identification is supported by a UV-vis absorption at 630 nm which is characteristic for G(N2–H)˙ in model compounds and oligomers. We find that the extent of photo-conversion to the C1′ sugar radical (C1′˙) in the one-electron oxidized d[TGCGCGCA]2 allows for a clear distinction among the various G:C protonation states which can not be easily distinguished by ESR or UV-vis spectroscopies with this order for the extent of photo-conversion: G˙+:C > G(N1–H)˙:C(+H+) ≫ G(N1–H)˙:C. We propose that it is the G˙+:C form that undergoes deprotonation at the sugar and this requires reprotonation of G within the lifetime of exited state

摘要

利用 ESR 和紫外可见光谱研究,本工作确定了 DNA 寡聚物 d[TGCGCGCA]2 中单电子氧化的 G:C(即 G˙+:C、G(N1–H)˙:C(+H+)、G(N1–H)˙:C 和 G(N2-H)˙:C)的质子化状态。使用单电子氧化 1-Me-dGuo 的基准 ESR 和紫外可见光谱来分析在各种 pH 值下单电子氧化 d[TGCGCGCA]2 获得的光谱数据。在 pH≥7 时,发现单电子氧化 d[TGCGCGCA]2 向周围溶剂的初始去质子化位点位于 N1 上,在 155 K 时形成 G(N1–H)˙:C。然而,在退火至 175 K 时,向溶剂的去质子化位点转移到 G(N1–H)˙:C 和 G(N2–H)˙:C 的平衡混合物。首次表明,在 ds DNA-寡聚物中 G(N2–H)˙的存在很容易与其他质子化形式区分开来,这归因于其易于观察到的氮超精细耦合(Azz(N2) = 16 G)。此外,对于 H2O 中的寡聚物,还发现了另外 8 G 的 N2–H 质子 HFCC。这种 ESR 鉴定得到了 630 nm 处紫外可见吸收的支持,这对于模型化合物和寡聚物中的 G(N2–H)˙是特征性的。我们发现,单电子氧化 d[TGCGCGCA]2 中 C1′糖自由基(C1′˙)的光转化程度允许在各种 G:C 质子化状态之间进行清晰区分,这些状态不能通过 ESR 或紫外可见光谱很容易区分,其光转化程度的顺序为:G˙+:C>G(N1–H)˙:C(+H+)≫G(N1–H)˙:C。我们提出,正是 G˙+:C 形式在糖上发生去质子化,这需要 G 在激发态寿命内重新质子化。

相似文献

2
The guanine cation radical: investigation of deprotonation states by ESR and DFT.
J Phys Chem B. 2006 Nov 30;110(47):24171-80. doi: 10.1021/jp064361y.
4
Direct observation of the hole protonation state and hole localization site in DNA-oligomers.
J Am Chem Soc. 2009 Jun 24;131(24):8614-9. doi: 10.1021/ja9014869.
5
Highly oxidizing excited states of one-electron-oxidized guanine in DNA: wavelength and pH dependence.
J Am Chem Soc. 2011 Mar 30;133(12):4527-37. doi: 10.1021/ja110499a. Epub 2011 Mar 7.
6
π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs.
J Phys Chem B. 2015 Sep 3;119(35):11496-505. doi: 10.1021/acs.jpcb.5b05162. Epub 2015 Aug 13.
8
π- vs σ-radical states of one-electron-oxidized DNA/RNA bases: a density functional theory study.
J Phys Chem B. 2013 Oct 3;117(39):11623-32. doi: 10.1021/jp407897n. Epub 2013 Sep 19.
9
Effect of base sequence and deprotonation of Guanine cation radical in DNA.
J Phys Chem B. 2008 Aug 28;112(34):10752-7. doi: 10.1021/jp804005t. Epub 2008 Aug 5.
10
Excited States of One-Electron Oxidized Guanine-Cytosine Base Pair Radicals: A Time Dependent Density Functional Theory Study.
J Phys Chem A. 2019 Apr 11;123(14):3098-3108. doi: 10.1021/acs.jpca.9b00906. Epub 2019 Apr 2.

引用本文的文献

2
Hole Transfer and the Resulting DNA Damage.
Biomolecules. 2024 Dec 30;15(1):29. doi: 10.3390/biom15010029.
3
Nitrogen-Centered Radicals Derived from Azidonucleosides.
Molecules. 2024 May 14;29(10):2310. doi: 10.3390/molecules29102310.
6
Proton-Transfer Reactions in One-Electron-Oxidized G-Quadruplexes: A Density Functional Theory Study.
J Phys Chem B. 2022 Feb 24;126(7):1483-1491. doi: 10.1021/acs.jpcb.1c10529. Epub 2022 Feb 13.
8
The Two Faces of the Guanyl Radical: Molecular Context and Behavior.
Molecules. 2021 Jun 9;26(12):3511. doi: 10.3390/molecules26123511.
10
Independent Generation and Time-Resolved Detection of 2'-Deoxyguanosin-N2-yl Radicals.
Angew Chem Int Ed Engl. 2020 Aug 3;59(32):13406-13413. doi: 10.1002/anie.202005300. Epub 2020 Jun 2.

本文引用的文献

1
Deuterium isotope effect on excited-state dynamics in an alternating GC oligonucleotide.
J Am Chem Soc. 2009 Dec 9;131(48):17557-9. doi: 10.1021/ja9076364.
3
Direct observation of the hole protonation state and hole localization site in DNA-oligomers.
J Am Chem Soc. 2009 Jun 24;131(24):8614-9. doi: 10.1021/ja9014869.
4
Importance of protonation state of guanine radical cation during hole transfer in DNA.
Chemphyschem. 2009 Aug 3;10(11):1766-9. doi: 10.1002/cphc.200900148.
7
Effect of base sequence and deprotonation of Guanine cation radical in DNA.
J Phys Chem B. 2008 Aug 28;112(34):10752-7. doi: 10.1021/jp804005t. Epub 2008 Aug 5.
8
Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells.
Acc Chem Res. 2008 Aug;41(8):1075-83. doi: 10.1021/ar700245e. Epub 2008 Jul 31.
9
Effect of base stacking on the acid-base properties of the adenine cation radical [A*+] in solution: ESR and DFT studies.
J Am Chem Soc. 2008 Aug 6;130(31):10282-92. doi: 10.1021/ja802122s. Epub 2008 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验