Suppr超能文献

肺实质的黏弹性非线性可压缩材料模型 - 实验与数值识别。

A viscoelastic nonlinear compressible material model of lung parenchyma - Experiments and numerical identification.

机构信息

Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85747 Garching b. München, Germany.

Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85747 Garching b. München, Germany.

出版信息

J Mech Behav Biomed Mater. 2019 Jun;94:164-175. doi: 10.1016/j.jmbbm.2019.02.024. Epub 2019 Feb 22.

Abstract

Characterizing material properties of lung parenchyma is essential in order to describe and predict the mechanical behavior of the lung in health and disease. Hence, we aim to identify the viscoelastic constitutive behavior of viable lung parenchyma with a particular focus on the nonlinear, compressible, and frequency-dependent material properties. To quantify the viscoelastic material behavior of rat lung parenchyma experimentally, we performed uniaxial tension tests with different frequencies, including the whole range of physiological frequencies, in combination with full-field displacement measurements (a total of 120 tests on 30 samples of 5 rats). By means of these experimental measurements, we identified the material parameters of two viscoelastic material models applicable to large three-dimensional deformations, i.e., the standard linear solid model and the model of fractional viscoelasticity. Our aim is to identify one set of material parameters that describes the whole range of physiological frequencies; therefore, we utilized a coupled inverse analysis, which equally incorporates all different tensile tests performed on one sample. The model most suitable for the description of the viscoelastic, nonlinear, and compressible material behavior of viable rat lung parenchyma is the strain energy function [Formula: see text] in combination with the model of fractional viscoelasticity (τ=0.06454s,α=0.5378, and β=1.856). This material model was validated to describe the complex nonlinear and compressible viscoelastic material behavior of lung parenchyma and can be utilized in finite element simulations of the whole range of physiological frequencies. Based on this model, it will be possible to quantify the stresses and strains of lung tissue during spontaneous and artificial breathing more reliable in the future.

摘要

描述和预测健康和疾病状态下肺组织的力学行为,肺实质材料特性的特征化至关重要。因此,我们旨在确定可行的肺实质的黏弹性本构行为,特别关注非线性、可压缩性和频率依赖性的材料特性。为了实验量化大鼠肺实质的黏弹性材料行为,我们进行了不同频率的单轴拉伸测试,包括整个生理频率范围,并结合全场位移测量(总共对 5 只大鼠的 30 个样本进行了 120 次测试)。通过这些实验测量,我们确定了两种适用于大三维变形的黏弹性材料模型的材料参数,即标准线性固体模型和分数黏性模型。我们的目标是确定一组能够描述整个生理频率范围的材料参数;因此,我们利用了耦合逆分析,该方法同等纳入了对一个样本进行的所有不同拉伸测试。最适合描述可行大鼠肺实质的黏弹性、非线性和可压缩材料行为的模型是应变能函数 [公式:见文本] 与分数黏性模型(τ=0.06454s、α=0.5378 和 β=1.856)的组合。该材料模型已被验证可描述肺实质的复杂非线性和可压缩黏弹性材料行为,并可用于整个生理频率范围内的有限元模拟。基于这个模型,未来将有可能更可靠地量化自发和人工呼吸过程中肺组织的应力和应变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验