Universidad EIA, Envigado, Colombia.
Hospital Alma Máter de Antioquia, Medellín, Colombia.
Sci Rep. 2023 Dec 2;13(1):21275. doi: 10.1038/s41598-023-41881-0.
The viscoelastic properties of the lung have important implications during respiratory mechanics in terms of lung movement or work of breathing, for example. However, this property has not been well characterized due to several reasons, such as the complex nature of the lung, difficulty accessing its tissues, and the lack of physical simulators that represent viscoelastic effects. This research proposes an electropneumatic system and a method to simulate the viscoelastic effect from temporary forces generated by the opposition of magnetic poles. The study was tested in a mechanical ventilation scenario with inspiratory pause, using a Hamilton-S1 mechanical ventilator (Hamilton Medical) and a simulator of the human respiratory system (SAMI-SII). The implemented system was able to simulate the stress relaxation response of a Standard Linear Solid model in the Maxwell form and showed the capacity to control elastic and viscous parameters independently. To the best of our knowledge, this is the first system incorporated into a physical lung simulator that represents the viscoelastic effect in a mechanical ventilation scenario.
肺的黏弹性特性在呼吸力学方面具有重要意义,例如在肺运动或呼吸功方面。然而,由于多种原因,例如肺的复杂性、获取其组织的困难以及缺乏代表黏弹性效应的物理模拟器,这个特性尚未得到很好的描述。本研究提出了一种电动气动系统和一种方法,通过磁极对的反作用力来模拟黏弹性效应。该研究在吸气暂停的机械通气情况下进行了测试,使用了 Hamilton-S1 机械通气机(Hamilton Medical)和人体呼吸系统模拟器(SAMI-SII)。所实现的系统能够模拟 Maxwell 形式下标准线性固体模型的应力松弛响应,并显示出独立控制弹性和粘性参数的能力。据我们所知,这是第一个被纳入物理肺模拟器的系统,该系统在机械通气情况下代表了黏弹性效应。