J Chem Inf Model. 2019 Apr 22;59(4):1357-1365. doi: 10.1021/acs.jcim.8b00657. Epub 2019 Apr 2.
Adsorption energies on surfaces are excellent descriptors of their chemical properties, including their catalytic performance. High-throughput adsorption energy predictions can therefore help accelerate first-principles catalyst design. To this end, we present over 5000 DFT calculations of H adsorption energies on dilute Ag alloys and describe a general machine learning approach to rapidly predict H adsorption energies for new Ag alloy structures. We find that random forests provide accurate predictions and that the best features are combinations of traditional chemical and structural descriptors. Further analysis of our model errors and the underlying forest kernel reveals unexpected finite-size electronic structure effects: embedded dopant atoms can display counterintuitive behavior such as nonmonotonic trends as a function of composition and high sensitivity to dopants far from the adsorbing H atom. We explain these behaviors with simple tight-binding Hamiltonians and d-orbital densities of states. We also use variations among forest leaves to predict the uncertainty of predictions, which allows us to mitigate the effects of larger errors.
表面的吸附能是其化学性质的优秀描述符,包括其催化性能。因此,高通量的吸附能预测可以帮助加速第一性原理催化剂设计。为此,我们对稀银合金上的 H 吸附能进行了超过 5000 次的 DFT 计算,并描述了一种快速预测新银合金结构上 H 吸附能的通用机器学习方法。我们发现随机森林可以提供准确的预测,而最佳特征是传统化学和结构描述符的组合。对我们模型误差和基础森林核的进一步分析揭示了意想不到的有限尺寸电子结构效应:嵌入的掺杂原子可能表现出违反直觉的行为,例如组成函数的非单调趋势,以及对远离吸附 H 原子的掺杂剂的高敏感性。我们使用简单的紧束缚哈密顿量和 d 轨道态密度来解释这些行为。我们还使用森林叶子之间的差异来预测预测的不确定性,这使我们能够减轻更大误差的影响。