Suppr超能文献

你能低到什么程度:低一氧化碳浓度下的甲烷生成量

How Low Can You Go: Methane Production of at Low CO Concentrations.

作者信息

Chen Xihan, Ottosen Lars Ditlev Mørck, Kofoed Michael Vedel Wegener

机构信息

Section for Biological and Chemical Engineering, Department of Engineering, Aarhus University, Aarhus, Denmark.

出版信息

Front Bioeng Biotechnol. 2019 Mar 7;7:34. doi: 10.3389/fbioe.2019.00034. eCollection 2019.

Abstract

Autotrophic hydrogenotrophic methanogens use H/CO as sole carbon and energy source. In contrast to H, CO is present in high concentrations in environments dominated by methanogens e.g., anaerobic digesters (AD), and is therefore rarely considered to be a limiting factor. Nonetheless, potential CO limitation can be relevant in the process of biomethanation, a power-to-gas technology, where biogas is upgraded by the addition of H and ideally reduce the CO concentration in the produced biogas to 0-6%. H is effectively utilized by methanogens even at very low concentrations, but little is known about the impact of low CO concentrations on methanogenic activity. In this study, CO consumption and CH production kinetics under low CO concentrations were studied, using a hydrogenotrophic methanogen, , as model organism. We found that both cellular growth and methane production were limited at low CO concentrations (here expressed as Dissolved Inorganic Carbon, DIC). Maximum rates ( ) were reached at [DIC] of 100 mM (extrapolated), with a CO consumption rate of 69.2 mol cell d and a CH production rate of 48.8 mol cell d. In our experimental setup, 80% of was achieved at [DIC] >9 mM. DIC half-saturation concentrations ( ) was about 2.5 mM for CO consumption and 2.2 mM for CH production. No CH production could be detected below 44.4 μM [DIC]. These data revealed that the limiting concentration of DIC may be much higher than that of H for a hydrogenotrophic methanogen. However, DIC is not a limiting factor in ADs running under standard operating conditions. For biomethanation, the results are applicable for both and biomethanation reactors and show that biogas can be upgraded to concentrations of 2% CO (98% CH) while still retaining 80% at pH 7.5 evaluated from . Since DIC concentration can vary significantly with pH and CO during biomethanation, monitoring DIC concentration through pH and CO is therefore important for keeping optimal operational conditions for the biomethanation process.

摘要

自养型氢营养型产甲烷菌利用H₂/CO₂作为唯一的碳源和能源。与H₂相比,CO₂在以产甲烷菌为主的环境(如厌氧消化器,AD)中浓度较高,因此很少被认为是一个限制因素。尽管如此,潜在的CO₂限制在生物甲烷化过程(一种从电能到气体的技术)中可能是相关的,在该过程中,通过添加H₂对沼气进行升级,理想情况下将产生的沼气中的CO₂浓度降低到0 - 6%。即使在非常低的浓度下,产甲烷菌也能有效地利用H₂,但关于低CO₂浓度对产甲烷活性的影响知之甚少。在本研究中,以氢营养型产甲烷菌为模式生物,研究了低CO₂浓度下的CO₂消耗和CH₄产生动力学。我们发现,在低CO₂浓度(此处表示为溶解无机碳,DIC)下,细胞生长和甲烷产生均受到限制。在[DIC]为100 mM(外推值)时达到最大速率(Vmax),CO₂消耗速率为69.2 μmol cell⁻¹ d⁻¹,CH₄产生速率为48.8 μmol cell⁻¹ d⁻¹。在我们的实验装置中,当[DIC] >9 mM时,实现了80%的Vmax。CO₂消耗的DIC半饱和浓度(Ks)约为2.5 mM,CH₄产生的Ks约为2.2 mM。在[DIC]低于44.4 μM时未检测到CH₄产生。这些数据表明,对于氢营养型产甲烷菌,DIC的限制浓度可能远高于H₂。然而,在标准操作条件下运行的厌氧消化器中,DIC不是限制因素。对于生物甲烷化,该结果适用于H₂/CO₂和H₂/CO₂/CO生物甲烷化反应器,并表明在pH 7.5(根据亨利定律评估)时,沼气可升级到CO₂浓度为2%(CH₄浓度为98%),同时仍保留80%的Vmax。由于在生物甲烷化过程中DIC浓度会随pH和CO₂显著变化,因此通过pH和CO₂监测DIC浓度对于维持生物甲烷化过程的最佳操作条件很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83cc/6416169/2494e94f94c7/fbioe-07-00034-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验