Suppr超能文献

转化医学中针对恶性黑素瘤的临床蛋白质科学。

Clinical protein science in translational medicine targeting malignant melanoma.

机构信息

Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.

Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden.

出版信息

Cell Biol Toxicol. 2019 Aug;35(4):293-332. doi: 10.1007/s10565-019-09468-6. Epub 2019 Mar 21.

Abstract

Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.

摘要

皮肤黑色素瘤是欧洲第六大常见癌症类型,占所有诊断癌症的 3.4%。更令人担忧的是,大约 20%的患者在治疗后会致命性地复发,复发程度很高。恶性黑色素瘤是一种高度侵袭性的皮肤癌,转移迅速扩散到局部淋巴结(第 3 期)和远端器官(第 4 期)。靶向肿瘤治疗是进展期 4 期黑色素瘤的标准治疗方法之一,BRAF 抑制剂(如 vemurafenib、dabrafenib)联合 MEK 抑制剂(如 trametinib)可有效对抗 BRAFV600E 突变的黑色素瘤。与传统化疗相比,靶向 BRAFV600E 抑制可实现更高的应答率。然而,在癌症得到控制一段时间后,大多数有反应的患者对治疗产生耐药性并出现致命进展。已经广泛研究了导致 BRAF 抑制剂耐药的许多潜在因素。尽管如此,为了解决转移性和治疗耐药性黑色素瘤的分子机制,仍需要替代的研究方法来解决剩余的未解决的临床问题。更广泛地说,蛋白质组学可以通过测量(例如,蛋白质产物的相对丰度、翻译后修饰(PTM)、蛋白质定位、周转率、蛋白质相互作用和蛋白质功能)来解决基因组学无法解决的临床问题。更具体地说,在特定的医疗和临床环境中对体液和组织进行蛋白质组学分析可以帮助识别癌症生物标志物和新的治疗靶点。要实现这一目标,需要开发一个稳健且可重复的临床蛋白质组学平台,该平台包括患者样本的自动化生物库、组织切片和组织学检查、高效的蛋白质提取、酶消化、基于质谱的定量蛋白质分析(通过无标记或标记技术)和/或用特定的 PTM 富集肽。通过结合来自磷酸化蛋白质组学和乙酰化蛋白质组学等的数据,不同黑色素瘤阶段的蛋白质表达谱可以为理解疾病的生物学和进展提供坚实的框架。当与蛋白质基因组学相结合时,从患者特定的基因组和转录组数据生成的定制蛋白质序列数据库有助于解释临床蛋白质组学生物标志物数据,从而更深入、更全面地描述疾病进展相关的细胞功能。与简化的、以患者为中心的临床蛋白质组学管道平行,基于质谱的成像可以帮助在单细胞分辨率下研究药物和药物代谢物在组织中的空间分布。这些发展是研究体内药物作用和疗效的重要进展,将有助于开发更有效和更安全的治疗黑色素瘤策略。学术界和医疗保健专业人员之间开展了一项规模庞大的合作,共同发起、建立和发展了一个专注于黑色素瘤和肺癌的前沿癌症研究中心。欧洲癌症登月行动 Lund 中心的主要研究重点是了解药物在个体化和个性化水平上对癌症的影响。同时,该中心提高了人们对与癌症进行不懈斗争的认识,并吸引了全球对该中心开展的卓越研究的关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/6757020/8787fe860fa8/10565_2019_9468_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验